17 research outputs found

    An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea)

    Get PDF
    This paper presents an updated checklist of the butterflies of Europe, together with their original name combinations, and their occurrence status in each European country. According to this checklist, 496 species of the superfamily Papilionoidea occur in Europe. Changes in comparison with the last version (2.6.2) of Fauna Europaea are discussed. Compared to that version, 16 species are new additions, either due to cryptic species most of which have been discovered by molecular methods (13 cases) or due to discoveries of Asian species on the eastern border of the European territory in the Ural mountains (three cases). On the other hand, nine species had to be removed from the list, because they either do not occur in Europe or lost their species status due to new evidence. In addition, three species names had to be changed and 30 species changed their combination due to new evidence on phylogenetic relationships. Furthermore, minor corrections were applied to some authors¿ names and years of publication. Finally, the name Polyommatus ottomanus Lefèbvre, 1831, which is threatened by its senior synonym Lycaena legeri Freyer, 1830, is declared a nomen protectum, thereby conserving its name in the current combination Lycaena ottomana.VL was supported by grant N 14-14-00541 from the Russian Science Foundation to the Zoological Institute of the Russian Academy of Sciences and ZF by grant 14- 36098G from the Czech Science Foundation

    Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies.

    Get PDF
    The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies

    A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    Get PDF
    Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin similar to 100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants

    Phylogeography of Koramius charltonius (Gray, 1853) (Lepidoptera: Papilionidae): a case of too many poorly circumscribed subspecies

    No full text
    Koramius charltonius (Gray, 1853) (Lepidoptera: Papilionidae) is distributed in the mountains of Central Asia. We analysed genetic and phylogeographic patterns throughout the western part of its range using a mitochondrial marker (COI). We also analysed the wing pattern using multivariate statistics. We found that the species contains several unique haplotypes in the west and shared haplotypes in the east. The haplotype groups do not correspond to the wing pattern and also the described subspecies do not correspond to either the haplotypes or the groups circumscribed by the wing pattern. Currently, there are more than ten subspecies of K. charltonius in Central Asia; based on our analyses we suggest a reduction to only five of them. The following nomenclatural changes are applied: (1) K. charltonius aenigma Dubatolov & Milko, 2003, syn. n., K. charltonius sochivkoi Churkin, 2009, syn.n., and K. charltonius alrashid Churkin & Pletnev, 2012, syn. n. are new synonyms of K. charltonius romanovi (Grum-Grshimailo, 1885); (2) K. charltonius marusya Churkin & Pletnev, 2012, syn. n., K. charltonius eugenia Churkin, 2009, syn. n., K. charltonius anjuta Stshetkin & Kaabak, 1985, syn. n., and K. charltonius mistericus Kaabak, Sotchivko & Titov, 1996, syn. n. are new synonyms of K. charltonius vaporosus (Avinov, 1913); and (3) K. charltonius safronovi Korb, Shaposhnikov, Zatakovoy & Nikolaev, 2013, syn. n. is a new synonym of K. charltonius voigti (Bang-Haas, 1927)

    Molecular phylogeny and biogeography of the genus Symbrenthia (Lepidoptera, Nymphalidae) correlates with the past geography of the Oriental region

    No full text
    Jesters, butterflies in the genus Symbrenthia Hübner, 1819, comprise 14 species mainly distributed in the Oriental region. Although this genus has attracted the attention of many researchers in the past, its taxonomy and biogeographic history remain unclear. In this study, we investigate phylogenetic and biogeographic relationships inferred from one mitochondrial (COI) and two nuclear genes (ArgKin, wingless), using both likelihood and Bayesian approaches. With the exception of S. hippalus, which we find to be either sister to Mynes Boisduval, 1832 or sister to Symbrenthia + Mynes + Araschnia, all species of Symbrenthia form a single monophyletic group. We describe a new genus Mynbrenthia Fric & Rindos gen. nov. to accommodate the taxon hippalus. The genus Symbrenthia splits into four sub-groups, “Brensymthia” (with S. niphanda and S. sinoides), “hypselis” (with S. hypselis, S. brabira, S. leoparda and S. doni), “intricata” (with S. intricata and S. hypatia) and “hippoclus” group (including S. platena and a complex of S. hippoclus and S. lilaea). The genus probably originated in Sundaland or continental Asia during the Eocene. The history of the genus Symbrenthia was more influenced by dispersal events and then by subsequent vicariances. Whereas the “hypselis” group colonised the Indo-Australian Archipelago from the Asian continent, the “hippoclus” group dispersed to continental Asia from the Indo-Australian Archipelago

    More hidden diversity in a cryptic species complex:a new subspecies of Leptidea sinapis (Lepidoptera, Pieridae) from Northern Iran

    No full text
    Abstract A new subspecies of Leptidea sinapis from Northern Iran, discovered by means of DNA barcoding, is described as Leptidea sinapis tabarestana ssp. nov. The new subspecies is allopatric with respect to other populations of L. sinapis and is genetically distinct, appearing as a well-supported sister clade to all other populations in COI-based phylogenetic reconstructions. Details on karyotype, genitalia, ecology and behaviour for the new subspecies are given and a biogeographical speciation scenario is proposed

    <i>Wolbachia</i> Infections Mimic Cryptic Speciation in Two Parasitic Butterfly Species, <i>Phengaris teleius</i> and <i>P. nausithous</i> (Lepidoptera: Lycaenidae)

    Get PDF
    <div><p>Deep mitochondrial divergence within species may result from cryptic speciation, from phylogeographic isolation or from endosymbiotic bacteria like <i>Wolbachia</i> that manipulate host reproduction. <i>Phengaris</i> butterflies are social parasites that spend most of their life in close relationship with ants. Previously, cryptic speciation has been hypothesised for two <i>Phengaris</i> species based on divergent mtDNA sequences. Since <i>Phengaris</i> species are highly endangered, the existence of cryptic species would have drastic consequences for conservation and management. We tested for cryptic speciation and alternative scenarios in <i>P. teleius</i> and <i>P. nausithous</i> based on a comprehensive sample across their Palaearctic ranges using COI gene sequences, nuclear microsatellites and tests for <i>Wolbachia</i>. In both species a deep mitochondrial split occurring 0.65–1.97 myrs ago was observed that did not correspond with microsatellite data but was concordant with <i>Wolbachia</i> infection. Haplotypes previously attributed to cryptic species were part of the <i>Wolbachia</i>-infected clades. In both species remaining phylogeographic structure was largely consistent between mitochondrial and nuclear genomes. In <i>P. teleius</i> several mitochondrial and nuclear groups were observed in East Asia while a single haplogroup and nuclear cluster prevailed across continental Eurasia. Neutrality tests suggested rapid demographic expansion into that area. In contrast, <i>P. nausithous</i> had several mitochondrial and nuclear groups in Europe, suggesting a complex phylogeographic history in the western part of the species range. We conclude that deep intraspecific divergences found in DNA barcode studies do not necessarily need to represent cryptic speciation but instead can be due to both infection by <i>Wolbachia</i> and phylogeographic structure.</p></div
    corecore