17 research outputs found

    Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from <it>Heliophila coronopifolia</it>, a native South African Brassicaceae species.</p> <p>Results</p> <p>Four defensin genes (<it>Hc-AFP1</it>-<it>4) </it>were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from <it>Arabidopsis </it>and <it>Raphanus</it>. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC<sub>50 </sub>values of 5-20 μg ml<sup>-1 </sup>against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against <it>Botrytis cinerea </it>was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen <it>Fusarium solani</it>, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of membrane activity. The peptides have a tissue-specific expression pattern since differential gene expression was observed in the native host. <it>Hc-AFP1 </it>and <it>3 </it>expressed in mature leaves, stems and flowers, whereas <it>Hc-AFP2 </it>and <it>4 </it>exclusively expressed in seedpods and seeds.</p> <p>Conclusions</p> <p>Two novel Brassicaceae defensin sequences were isolated amongst a group of four defensin encoding genes from the indigenous South African plant <it>H. coronopifolia</it>. All four peptides were active against two test pathogens, but displayed differential activities and modes of action. The expression patterns of the peptide encoding genes suggest a role in protecting either vegetative or reproductive structures in the native host against pathogen attack, or roles in unknown developmental and physiological processes in these tissues, as was shown with other defensins.</p

    The Rule of Prior Exhaustion of Local Remedies in the International Law Doctrine and its Application in the Specific Context of Human Rights Protection

    No full text

    PR gene families of citrus: their organ specific-biotic and abiotic inducible expression profiles based on ESTs approach

    Get PDF
    In silico expression profiles, of the discovered 3,103 citrus ESTs putatively encoding for PR protein families (PR-1 to PR-17), were evaluated using the Brazil citrus genome EST CitEST/database. Hierarchical clustering was displayed to identify similarities in expression patterns among citrus PR-like gene families (PRlgf) in 33 selected cDNA libraries. In this way, PRlgf preferentially expressed by organ and citrus species, and library conditions were highlighted. Changes in expression profiles of clusters for each of the 17 PRlgf expressed in organs infected by pathogens or drought-stressed citrus species were displayed for relative suppression or induction gene expression in relation to the counterpart control. Overall, few PRlgf showed expression 2-fold higher in pathogen-infected than in uninfected organs, even though the differential expression profiles displayed have been quite diverse among studied species and organs. Furthermore, an insight into some contigs from four PRlgf pointed out putative members of multigene families. They appear to be evolutionarily conserved within citrus species and/or organ- or stress-specifically expressed. Our results represent a starting point regarding the extent of expression pattern differences underlying PRlgf expression and reveal genes that may prove to be useful in studies regarding biotechnological approaches or citrus resistance markers
    corecore