1,566 research outputs found

    Making tea: a human centred approach to designing a pervasive smart lab notebook

    No full text
    The methodology used to design a useful and workable laboratory electronic notebook is described along with some of the technology needed to implement the smart lab systems

    Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints

    Get PDF
    Major tropical volcanic eruptions have emitted large quantities of stratospheric sulphate and are potential sources of stratospheric chlorine although this is less well constrained by observations. This study combines model and ice core analysis to investigate past changes in total column ozone. Historic eruptions are good analogues for future eruptions as stratospheric chlorine levels have been decreasing since the year 2000. We perturb the pre-industrial atmosphere of a chemistry-climate model with high and low emissions of sulphate and chlorine. The sign of the resulting Antarctic ozone change is highly sensitive to the background stratospheric chlorine loading. In the first year, the response is dynamical, with ozone increases over Antarctica. In the high HCl (2 Tg emission) experiment, the injected chlorine is slowly transported to the polar regions with subsequent chemical ozone depletion. These model results are then compared to measurements of the stable nitrogen isotopic ratio, δ15N(NO−3), from a low snow accumulation Antarctic ice core from Dronning Maud Land (recovered in 2016-17). We expect ozone depletion to lead to increased surface ultraviolet (UV) radiation, enhanced air-snow nitrate photo-chemistry and enrichment in δ15N(NO−3) in the ice core. We focus on the possible ozone depletion event that followed the largest volcanic eruption in the past 1000 years, Samalas in 1257. The characteristic sulphate signal from this volcano is present in the ice-core but the variability in δ15N(NO−3) dominates any signal arising from changes in UV from ozone depletion. Prolonged complete ozone removal following this eruption is unlikely to have occurred over Antarctica.National Environment Research Council (NERC) Standard Grant (NE/N011813/1

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    Assessment of Objectively Measured Physical Activity Levels in Individuals with Intellectual Disabilities with and without Down's Syndrome

    Get PDF
    Objective: To investigate, using accelerometers, the levels of physical activity being undertaken by individuals with intellectual disabilities with and without Down’s syndrome. Methods: One hundred and fifty two individuals with intellectual disabilities aged 12–70 years from East and South-East England. Physical activity levels in counts per minute (counts/min), steps per day (steps/day), and minutes of sedentary, light, moderate, vigorous, and moderate to vigorous physical activity (MVPA) measured with a uni-axial accelerometer (Actigraph GT1M) for seven days. Results: No individuals with intellectual disabilities met current physical activity recommendations. Males were more active than females. There was a trend for physical activity to decline and sedentary behaviour to increase with age, and for those with more severe levels of intellectual disability to be more sedentary and less physically active, however any relationship was not significant when adjusted for confounding variables. Participants with Down’s syndrome engaged in significantly less physical activity than those with intellectual disabilities without Down’s syndrome and levels of activity declined significantly with age. Conclusions: Individuals with intellectual disabilities, especially those with Down’s syndrome may be at risk of developing diseases associated with physical inactivity. There is a need for well-designed, accessible, preventive health promotio

    Analytic traveling-wave solutions of the Kardar-Parisi-Zhang interface growing equation with different kind of noise terms

    Full text link
    The one-dimensional Kardar-Parisi-Zhang dynamic interface growth equation with the traveling-wave Ansatz is analyzed. As a new feature additional analytic terms are added. From the mathematical point of view, these can be considered as various noise distribution functions. Six different cases were investigated among others Gaussian, Lorentzian, white or even pink noise. Analytic solutions are evaluated and analyzed for all cases. All results are expressible with various special functions Mathieu, Bessel, Airy or Whittaker functions showing a very rich mathematical structure with some common general characteristics. This study is the continuation of our former work, where the same physical phenomena was investigated with the self-similar Ansatz. The differences and similarities among the various solutions are enlightened.Comment: 14 pages,14 figures. arXiv admin note: text overlap with arXiv:1904.0183

    Attitudes to antipsychotic drugs and their side effects: a comparison between general practitioners and the general population

    Get PDF
    BACKGROUND: Attitudes towards antipsychotic medication play an important part in the treatment for schizophrenia and related disorders. We aimed measuring general practitioners' attitudes to antipsychotic drugs and their adverse side effects and comparing these with the attitudes of the general population. METHODS: Analysis and comparison of two representative samples, one comprising 100 General Practitioners (GPs), the other 791 individuals randomly selected from the general population. The setting was the German speaking cantons of Switzerland. RESULTS: General practitioners have significantly more positive attitudes towards anti-psychotic drugs than the general public. They reject widespread prejudices about the use of anti-psychotic medication significantly more than the general population. In particular the risk of dependency was assessed as 'low' by GP's (80%), in contrast to only 18% of the general population sample. In no instance did a majority of the GPs advise not tolerating any of the 10 possible adverse effects presented in this study. This is in marked contrast to the general population sample, where a majority recommended discontinuation for movement disorder (63%), strong tremor (59%), risk of dependency (55%) and feelings of unrest (54%). CONCLUSION: As well as effective management of side-effects being a vital aspect of patient and carer education, prescribing doctors need to be aware that their mentally ill patients are likely to be confronted with extremely negative public attitudes towards antipsychotic medication and with strong pressures to stop taking their medication in the event of side-effects

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    Fully Metal-Coated Scanning Near-Field Optical Microscopy Probes with Spiral Corrugations for Superfocusing under Arbitrarily Oriented Linearly Polarised Excitation

    Get PDF
    We study the effect of a spiral corrugation on the outer surface of a fully metal-coated scanning near-field optical microscopy (SNOM) probe using the finite element method. The introduction of a novel form of asymmetry, devoid of any preferential spatial direction and covering the whole angular range of the originally axisymmetric tip, allows attaining strong field localization for a linearly polarised mode with arbitrary orientation. Compared to previously proposed asymmetric structures which require linearly polarised excitation properly oriented with respect to the asymmetry, such a configuration enables significant simplification in mode injection. In fact, not only is the need for the delicate procedure to generate radially polarised beams overcome, but also the relative alignment between the linearly polarised beam and the tip modification is no longer critical

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
    • …
    corecore