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Abstract

Clustering of specific object detections is a challenging problem for video summarization. In this article, we present a
method to form tracks by grouping face detections of a video sequence. Our clustering method is based on a
probabilistic maximum a posteriori data association framework, and we apply it to face detection in a visual
surveillance context. Optimal solution is found with a procedure using network-flow algorithms described in previous
pedestrian tracking-by-detection works. To address difficult cases of small detections in scenes with multiple moving
people, given that face detections are located in a video sequence, we use dissimilarities involving appearance and
spatio-temporal information. The main contribution is the use of an optical flow or local front–back tracking to handle
complex situations appearing in real sequences. The resulting algorithm is then able to deal with situations where
people are crossing one another and face detections are scattered due to head rotation. The clustering step of our
framework is compared to generic clustering methods (hierarchical clustering and affinity propagation) on several real
challenging sequences, as evaluations indicate that this is more adapted to video-based detection clustering. We
propose to use a new evaluation criteria, derived from purity and inverse purity of a clustering estimation, to assess
performances of such methods. Results also show that optical flow and a skin color prior added to face detections
improve the clustering quality.
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1 Introduction
Face detection on still images is becoming more and more
common and efficient, yet use in real surveillance video
sequences remains a big issue. Due to the large number
of detections extracted from video, an automatic cluster-
ing of face detections is interesting for visual surveillance
applications. For archive browsing or for face tagging on
videos, it is easier to investigate with an album of faces
than with a set of all the detected faces.
We propose a method to cluster-specific object detec-

tions of a video sequence, which we applied to face
detections. Our efforts focus on real visual surveillance
constraints: cluttered scenes, uncontrolled, and contain-
ing multiple small faces.
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In uncontrolled visual surveillance scenes, the use of a
face recognition system remains complicated due to the
poor quality of face images. It is for this reason that our
method focuses on grouping face detections extracted
from a video sequence and we do not address directly the
face recognition problem. Our goal is to form tracks of
face detections occurring in a whole video sequence.
The proposed method is based on three main stages (cf.

Figure 1). First we use a face detector to localize faces in
all frames of the video and extract various features of the
detections. These features are then used to compute a dis-
similarity matrix based on appearance and space–time.
Finally, an optimization method involving a probabilistic
model is employed to group all the detections according
to the dissimilarity matrix.

2 Related work
Actual face tagging systems present interesting results on
TV shows/series or news videos. The main works [1-9]
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Figure 1 First, faces are extracted from each video frame by a standard face detector. Then appearance features and spatio-temporal features
are built to compute different dissimilarity matrices. Finally, these dissimilarity matrices are combined to a single one and clustering is performed by
solving a MAP estimation problem.

combine: a face detector in still image, face tracking
techniques, and face recognition system with different
probabilistic frameworks.
Some of them are semi-supervised: the study by

Ramanan et al. [1] proposes a pre-clustering step to dras-
tically reduce the hand-labeling time, Berg et al.’s study
[2] automatically corrects inaccurately and ambiguously
labeled face from news videos. In most of cases studied,
a recognition system can be used, thanks to the detec-
tion quality and external information is sometimes added.
Sivic et al. [4] work with near frontal faces and use other
attributes such as hair or clothes to describe a person, and
an extension of this method [3] uses subtitles to improve
labeling and naming of persons.
All of these works use news, TV shows/series videos, as

materials to face tagging in videos. However, in surveil-
lance video scenes, people are not looking at the camera,
close-up face views are rare, and a lot of mutual occlusions
occurs. These are some of the reasons why face cluster-
ing remains extremely challenging in unconstrained visual
surveillance situations.
Recent works on multi-object tracking can be seen as

partial solutions to face clustering in video sequences.
Such methods are generally divided into two main parts:
(1) object detection and (2) data association. In these
multi-object trackers, the data association problem is
crucial having to handle complex situations such as

partial or total occlusion. In fact, the problem of multi-
object tracking and clustering of detected moving objects
has many similarities to our problem. Many works in
multi-object tracking have proposed some partial solution
[10-13] using sequential or global strategies to estimate
object trajectories and overcome identification errors.
To track different objects we often have to extrapolate

the trajectories to predict the tracking during occlusions.
To improve the quality of multi-object tracking one way
is to add space–time information, and one currently used
solution is short-term tracking. The studies [14-16] use a
single object tracker with various probabilistic models and
sampling.
For global tracking-by-detection, the main problem is

to find a solution in a non-prohibitive computation time,
because of the complexity of the possible detection com-
binations. To find a solution of a data association problem,
as occurring in multi-target tracking, a lot of specific clus-
tering algorithms are also employed: sampling withMonte
Carlo methods [14,15,17], optimization methods like lin-
ear programming [18], Hungarian algorithm [19,20], or
successive min-cost flow [21] on a graph. We chose to
use this last method, and find a solution to the maximum
a posteriori (MAP) by successive searches of min-cost
flows on a graph [21]. Even though it restricts the prob-
lem model, this method is advantageous in that it finds an
optimal solution in a reasonable computation time.
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In this article, we employ the problem definition and
solving of [21]. To add space–time cue, we extended face
detections with forward and backward tracking. However,
most of the time, short-term object trackers cannot actu-
ally handle occlusions as they are just used to estimate
the motion of the object to fill time gaps. That is why,
our idea is to use optical flow to add a local space–time
information. We also tested the use of a generic cluster-
ing method for the third stage of our method. As the
dissimilarities employed in visual detection clustering are
not necessarily metrics, we focus on non-metric cluster-
ing methods.We selected two clustering methods from all
the algorithms available. The first is a classical and famous
method: hierarchical ascendant clustering. This method is
an agglomerative clustering building a hierarchy accord-
ing to dissimilarities between objects, this hierarchy could
then be thresholded to define clusters. The other selected
algorithm is the affinity propagation [22-24]. This algo-
rithm performs unsupervised classification by identifying
a subset of representative exemplars, and is also employed
in a visual understanding context.

3 Probabilistic data-associationmodel
This section presents the background we employed to
define the probabilistic model used to cluster-detected
faces. It is inspired by the model proposed by Nevatia and
colleagues [21], we modified its formulation to clarify the
likelihood and a priori probability terms and adapted it to
the video-based face clustering case. To obtain an optimal
clustering according to our probabilisticMAP framework,
we used their network-flow-based algorithm.

3.1 MAP data-association model
The model is based on a probabilistic framework where
a state (set of associations) has to be estimated from
observations given by the set of faces extracted from a
video sequence. State and observations are random vari-
ables, and the objective is to obtain MAP estimate of face
associations.
Each observation (face detection) contains position on

the frame, time in the sequence (frame index), appearance
of the detection area, and motion information (detailed
in the next section). Let Z = {zi} be the set of all the
detections, where zi = (xi, si,ai, ti) is a detection; xi rep-
resents the xy-position in pixels, si its width in pixels, ai
the appearance descriptor, and ti the time (frame index) in
the video. We denote D the number of detection in Z .
The state to be estimated is a set of trajectories T =

{T1, . . . ,TK ,TFP}, where a trajectory is a set of detections:
Tk = {zk1 , . . . , zknk } (ki = j means that the ith element of
the k trajectory is the detection zj). The cluster denoted
by TFP represents the set of detections considered as false
positives. As one detection can only belong to one trajec-
tory and each detection is assigned to a trajectory, T is in

fact a clustering of the D detections. T denotes the set of
all the possible clustering of D detections.
The MAP estimation problem is then described as

T̂ = argmax
T∈T

P(T |Z) = argmax
T∈T

P(T)P(Z|T) (1)

where T is the set of all the possible clustering of D
detections. With independence hypothesis

T̂ = argmax
T∈T

P(T)
∏
i
P(zi|T)

∏
k
P(Z|Tk) (2)

In [21], the detection likelihood (P(zi|T)) is represented
with a Bernoulli distribution with a constant parameter.
This parameter corresponds to the false positive rate of
the face detector. We chose to delegate this term to the
prior because it does not involve any observation, and we
introduced a detection likelihood based on observations.
This likelihood is described by the probability that an
observation zi is a real face and not a false positive of the
detector. A more detailed description of this probability is
given in Section 5.
As we delegate the false positive prior to the a priori

probability, our a priori probability does not only involve
the number of clusters as in [21], but also the number of
detections considered as false positives. Assuming inde-
pendence between the number of clusters and the number
of false positive detections, the prior is defined as follows

P(T) = Pstart(K)PFP(|TFP|)
= P2(K−1)

e β |TFP|(1 − β)D−|TFP| (3)

where Pe represents the probability of starting a trajectory
with a given detection (estimated as the number of people
over the number of detections), K is the number of trajec-
tories in T and |TFP| the number of detections considered
as false positives. The β parameter is the false positive rate
of the detector, and D denotes the total detection count.
The trajectory likelihood P(Z|Tk) represents the

appearance and space–time consistency of a trajectory Tk .
It is expressed by a first-order Markov chain, where states
are the detections of Tk :

P(Z|Tk) = Plink(zk1 |zk0)Plink(zk2 |zk1) . . .

Plink(zklk |zklk−1) (4)

Section 6 describes how we used dissimilarities (involv-
ing time, appearance, and movement) to define the Plink
probabilities.
In our case, we just used the following two parameters

to describe a situation: the rate of false positive β and the
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probability of the detector Pe to start a trajectory. These
parameters could be statistically estimated with

β = False positives
Number of detection

Pe = Number of people
Number of detection

As the face detector fails when the camera is not in
front of the face, missed detections are not necessarily
attributed to occlusion events and an explicit occlusion
model (as in [21]) is not very suitable.
It is therefore complicated to set up the Pe parameter,

however, experiments at Section 7.3 show that, in prac-
tice, results are quite stable with the Pe variation, then we
empirically set it to 1%.

3.2 Resolving the MAP
Computing all the solutions of the MAP model is in
general a challenging task, mainly because of the compu-
tational complexity.
By using the first-order Markov chain hypothesis for the

trajectory likelihood, the solution is tractable and an opti-
mal solution to the MAP can be computed by successively
solving min-cost flow problems on a specific graph [21].
Nodes of this graph represent detections and a path on
the oriented graph represents a cluster. The cost of an
arc between two nodes is assigned to computed transi-
tion dissimilarity (opposite of log-likelihood) between the
corresponding two detections. So, with a given value, the
min-cost flow determines the associations to be used for
clustering. An optimal MAP solution is found by vary-
ing the flow value and iteratively solving min-cost flow
problems.

4 Detection extension withmovement
information

In this section, we present the manner in which we intro-
duce space–time information to face detections. Twoways
of representing space–time cues are proposed: (1) a basic
short-term tracker and (2) an optical flow estimation. The
two approaches are compared in Section 7.3.2.

4.1 Short-term tracking
To overcome hard situations due to long periods of unde-
tected faces, we first propose to extend detections by using
short-term backward and forward tracking. This algo-
rithm provides additional space–time information to help
in situations involving two detections distant in time. The
tracking system is based on the estimation of the optimal
position and size of the reference face (which is the patch
of the detection in the present frame) at a further frame.
The optimization procedure uses a cost function based
on the appearance dissimilarity with the reference patch.

Search domain is bounded by priors: a maximum veloc-
ity and scale factor. The optimization core is achieved by
a Nelder–Mead method based on simplexes with the pre-
vious estimation as starting point. Tracking is achieved
for each detection, and pursuing in the past and future
according to video time.
Introducing new space–time information with short-

term tracking implies extending the observation zi of a
detection with the new positions given by the tracker. We
denote this new observation (called tracklet) as

z̃i = {z1i , z2i , . . . , zNi
i } (5)

where zki = (xki , s
k
i , t

k
i ) are positions and sizes estimated

with the short-term tracking and where Ni is the number
of elements in the tracklet of the detection i. The zki are
sorted by frame time and one of these is the previously
defined zi.

4.2 Optical flow
Another way to take into account space–time informa-
tion is to use optical flow. There are many methods to
compute an optical flow between two frames, one of
the main issues is to represent a large scale of displace-
ments [25-27]. In our case, we used a pyramidal version of
the Lucas–Kanade algorithm to represent both small and
large displacements as explained in [26].
In each frame having a detection, we compute the

optical flow from the previous to the current frame and
from the current to the next frame, then these two optical
flows are averaged. The resulting speed vector of a detec-
tion is obtained by taking the most representative flow
vector in the detection area. This vector is added to the
observation zi.

5 Detection likelihood
In our MAP framework, the detection likelihood explains
the fact that a detection is a true or false positive of
the detector. In the case of a color video, we propose
adding this information with the skin color proportion of
a detection. We define the likelihood as follows

P(zi|T) =
{
1 − Pf (ai) if zi ∈ TFP

Pf (ai) else
(6)

where the probability to be a face (Pf ) with an appearance
ai is estimated by the proportion of skin color pixels over
the detected face patch. The skin color segmentation is
simply done by fixed colorimetric boundaries [28]. Due to
ethnic skin differences and colorimetric noise, skin color
detection is far from being the best representation of skin
proportion, but it still adds information in the main cases.
To limit the exclusion of true detection without skin color
pixels, we threshold Pf (ai) to be 0.01 at minimum instead
of 0.
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Another way to improve the detector is to add the prior
that a detection is on the foreground by using background
extraction techniques. The drawback of this method is
that it cannot handle moving objects such as pedestrian
clothes or vehicles, and background extraction is compli-
cated with non-fixed cameras.

6 Detection dissimilarities
This section describes the probability Plink to transit from
one detection to another, this probability is based on dis-
similarities between detections. This transition probabil-
ity combines four affinities: appearance (Aa), motion(Am),
speed (As), and time (At):

Plink(zj|zi) = Aa(zi, zj)Am(zi, zj)As(zi, zj)At(zi, zj) (7)

Dissimilarities are integrated into the MAP framework
as the opposite of the log-likelihood of a transition (cf.
Section 3.1). The dissimilarity expression is then defined
as follows

d(zi, �zj) = − log(Plink(zj|zi))
= − log(Aa(zi, zj)) − log(Am(zi, zj))

− log(As(zi, zj)) − log(At(zi, zj))

= d̃a(zi, zj)2 + d̃m(zi, zj)2

+d̃s(zi, zj)2 + d̃t(zi, zj)2 (8)

with d̃a the appearance dissimilarity, d̃m the motion dis-
similarity, and d̃t the temporal dissimilarity.
All of these dissimilarities are reduced to be combined

in a normalized way

d̃x(zi, zj) = dx(zi, zj)
σx

(9)

where x is a, m, s, or t and σx is the standard deviation
estimated with all the dx(f , g) with (f , g) ∈ Z × Z . The
next sections describe the different dx dissimilarities.

6.1 Appearance dissimilarity
Detection appearance is represented by an HS-V his-
togram [29]. This histogram is the concatenation of a
2D HS histogram and a 1D V histogram of image pixels
(where H, S, and V represent hue, saturation, and value of
a color, respectively). If the S andV values are large enough
for a pixel, the pixel is counted in the HS histogram, or
else it is counted in the V histogram. To measure the
dissimilarity between two HS-V histograms, we used the
Bhattacharyya coefficient.
By considering only the face detection area, color infor-

mation is not sufficient to distinguish two different faces.
We therefore extended the face detection to an area under
the head, in order to retrieve color information from the

pedestrian clothes, this is done by doubling down the
detection area.

6.2 Space–time dissimilarities
For dissimilarities involving position in frame and frame
time, we define four dissimilarities: two for the motion
(based on tracklets or optical-flows), one for the speed (in
pixel per frame time), and one for the time. If detections
are extended with tracklets (z̃i instead of zi) the track-
let dissimilarity is employed, if not, the optical flow is
estimated and the optical flow dissimilarity is used.

6.2.1 Tracklet dissimilarity
To quantify the space–time continuity between two track-
lets, the end of the first tracklet is interpolated to the
beginning time of the other tracklet, and vice versa. An
Euclidean distance is then measured between the final
extrapolated position of the first tracklet and the begin-
ning of the second, and another distance is computed
between the extrapolated position of the second track-
let and the last position of the first tracklet (cf. Figure 2).
Extrapolation is done using a constant velocity model esti-
mated with an average of finite differences of the last
tracklet positions. To use this measurement with two
single detections, we just set their speed to zero.
The motion dissimilarity between two trajectories is

obtained by averaging the two acquired distances, as
shown in Figure 2. This average is weighted by the num-
ber of positions used to estimate the speed. In practice, in
order to account possible high accelerations, the number
of finite differences used to estimate the speed is limited.
If the two tracklets overlap (i.e., at least one date in

common), the motion dissimilarity is computed from the
spatial average of position distances on common frames.
Given Tij

inter = {t1i , . . . , tNi
i } ∩ {t1j , . . . , t

Nj
j } the frame

intersection and assuming that z1i is before z1j , the move-
ment dissimilarity is defined by

• if no overlapping (i.e., Tij
inter = ∅):

dm(z̃i, z̃j) = Kidpos(ẑi, z1j ) + Kjdpos(ẑj, zNi
i )

Ki + Kj
(10)

where ẑi is the forward extrapolation of z̃i, ẑj the
backward extrapolation of z̃i, Ki (resp. Kj) is the
number of elements used to estimate speed from z̃i
(resp. z̃j). In practice, we take Ki = min(10,Ni) for
our experiments.

– if overlapping:

dm(z̃i, z̃j) =
∑

t∈Tij
inter

dpos(zk
i(t)

i , zk
j(t)

j )

|Tij
inter|

(11)
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Figure 2Movement dissimilarity between two non-overlapping tracks.

where ki(tni ) = n and dpos are the position distance
between two observations. This distance is an Euclidean
distance divided by the mean of the two detection widths:

dpos(zi, zj) = 2
||�xi − �xj||
si + sj

(12)

this normalization is done to be closer to a spatial overlap
measure than the simple Euclidean distance is.

6.2.2 Optical flow dissimilarity
Instead of using tracklets, motion can also be estimated
using an optical flow. The optical flow is computed by a
pyramidal version of the Lucas–Kanade [26] algorithm,
we use five levels for the image pyramids. Figure 3 shows
an example of the estimated optical flow for a video of our
dataset. Two optical flows are computed at each frame:
one with the previous frame and the other with the next
frame. The two obtained optical flows are then averaged
to reduce the noise. The resulting velocity of a detection is

estimated by the flow vector the most represented on the
detection area.
The motion dissimilarity from optical flow is defined as

follows

dm(zi, zj) = 1
2
(||�xi + �vi(tj − ti) − �xj||

+||�xj + �vj(ti − tj) − �xi||) (13)

where �vi is the estimated optical flow vector of the detec-
tion i.

6.2.3 Speed dissimilarity
Some associations are physically impossible due to the
maximum speed that a person can achieve. To limit these
associations, we use, in addition to the previous move-
ment dissimilarity, a speed-based dissimilarity:

ds(zi, zj) = ||�xi − �xj||
|ti − tj| + 1

(14)

Figure 3 Optical flow computed with pyramidal Lucas–Kanade.
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6.2.4 Time dissimilarity
The dissimilarity based on time is defined as the difference
of times:

dt(zi, zj) =
{ tj − ti if �t ≥ tj − ti > 0

∞ else
(15)

where �t is empirically set (50 frames for our experi-
ments).
If tracklets are used, the dissimilarity is simply defined

as the smallest gap between starts and ends of the two
compared tracklets:

dt(z̃i, z̃j) = min(dt(z1i , z1j ), dt(z
Ni
i , zNj

j ),

dt(z1i , z
Nj
j ), dt(zNi

i , z1j )) (16)

7 Evaluation
This section presents the evaluation of the proposed
method on several challenging videos.

7.1 Evaluation criteria
There are several ways to measure clustering quality:
intrinsic methods (by measuring the proximity of ele-
ments inside a cluster and the proximity between clusters)
and extrinsic methods that use manual ground truth clas-
sification.
As shown by Amigó et al. [30], there are many ways to

extrinsically evaluate clustering involving different qual-
ity measures, such as good and bad pair counting, purity,
entropy measures, etc.
We propose an evaluationmeasurement based on purity

and inverse-purity. We define estimated clustering as clus-
tering obtained by a clustering algorithm, as opposed to
ground-truth clustering manually achieved by a human
expert. Moreover, the purity is called estimation purity
(EP) and the inverse-purity ground-truth purity (GTP).
Assuming estimated clustering of all the detections, EP

and GTP are defined as follows (cf. Figure 4):

Figure 4 Illustration of EP and GTP.

– EP:

EP = 1
D

∑
k

max
j

|Ek ∩ GTj| (17)

where D is the number of detections, GT = {GTj}
the ground-truth clustering, and E = {Ek} the
estimated clustering. The higher the EP, the less there
are covering errors. We refer to a covering error
when a cluster includes the faces of different people.

– GTP:

GTP = 1
D

∑
k

max
j

|GTk ∩ Ej| (18)

it shows the proportion of well-represented
detections (i.e., it measures the fact that there are few
people represented by multiple estimated clusters).

Considering the case of a single cluster gathering all the
detections:

EP = maxj |GTj|
N

(noted EPmin) and GTP = 1

and the case where each detection is represented by each
cluster:

EP = 1 and GTP = |GT|
N

(noted GTPmin)

we see that the minimum purities are not zero, but con-
stants depending only on the number of detections and
the largest cluster in the ground truth. To compare the
various clustering algorithms, we made some changes to
have the minimum of EP and GTP at 0.

EPn = EP − EPmin
1 − EPmin

GTPn = GTP − GTPmin
1 − GTPmin

The closer both EP and GTP are to 1, the better the
clustering. So, we use an F-measure of EPn and GTPn to
represent the quality by a single number between 0 and 1:

F = 2
EPn × GTPn
EPn + GTPn

This measure is used in our experiments to compare the
estimated clustering with the ground-truth clustering.

7.2 Experiments
7.2.1 Dataset
The experimentation dataset is based on Additional files
1, 2, 3, 4, 5 and 6 . Some figures are given in Table 1.
Videos (Additional file 1: Video 1, Additional file 2:

Video 2, Additional file 3: Video 3, Additional file 4: Video
4, and Additional file 5: Video 5) constitute a challenging
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Table 1 Dataset for experiments

Video Passages Frames nb detect. FP (%) Size

1 24 1934 1725 2.78 35

2 6 307 200 11.5 35

3 7 384 920 2.61 36

4 6 485 463 3.46 58

5 29 1966 1794 1.56 63

6 14 5042 1299 22.17 32

Passages, number of people crossing the viewed area with a detected face;
frames, total number of frames of the video; nb detect., number of detections;
FP, observed rate of false positives for the face detector used; size, mean of
detection width in pixels.

dataset because of the fast crossing and direction varia-
tion of pedestrians, and also the small size of detected
faces (materials provided with this article contain these
five videos). Video 6a is part of a dataset built to evaluate
the detection of abandoned baggage systems in Advanced
Video and Signal Based Surveillance Conference. The
frame rate of videos Additional file 1: Video 1, Additional
file 2: Video 2, Additional file 3: Video 3 and Video 6
is 25 frames per second and 13 frames per second for
videos Additional file 4: Video 4 and Additional file 5:
Video 5. To extract faces, we use the classic Viola–Jones
[31] face detector implemented in OpenCV library. For
all the videos, detections are rather small (from side 30 to
60 pixels) compared to the face recognition. It is close to
the smallest face we can detect with the OpenCV imple-
mentation. Figure 5 shows the face images obtained from
the face detector with our dataset.

The ground-truth clustering is made by hand by
classifying all the detections, with a cluster for each people
passage, plus a false positive cluster. Figure 6 shows some
video screen-shots of our dataset.

7.2.2 Experimental procedures
In the following experiments, we compare the clustering
stage in the MAP framework with two generic clustering
methods using the same dissimilarity matrices. The first
one is the hierarchical clustering with single-link, and the
second one is a relatively new method based on affinity
propagation between elements [22-24].
Then, we compare different movement dissimilarities:

one based on optical flow, another with forward and back-
ward tracking, and the last one with just the pixel distance
between detections. We also present some results show-
ing the impact of the skin color term Pf in detection
appearance likelihood.

7.3 Results
7.3.1 Performance of theMAP clusteringmethod
Table 2 compares the clustering stage of our MAP cluster-
ing method to hierarchical clustering and affinity propa-
gation clustering. It shows the best F-measures observed
for the three algorithms, using the same dissimilarity mea-
sure. For themovement dissimilarity, we use the one based
on optical flowmeasure. Optimized F-measures are found
by varying parameters which impacts the number of clus-
ters. These parameters are dissimilarity cutting threshold
for the hierarchical method, global preference parameter
for affinity propagation, and Pe for our method.

Figure 5 Preview of face detections, we use the OpenCV implementation of the Viola–Jones face detector. Face images are obtained by
growing the detection to the under-head area.
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Figure 6 Preview of our dataset videos. From top left to bottom right: Additional file 1: Video 1, scene of videos Additional file 2: Video 2 and
Additional file 3: Video 3, scene of videos Additional file 4: Video 4 and Additional file 5: Video 5, Video 6. Frame sizes in pixels: 800 × 600 for videos
Additional file 1: Video 1, Additional file 2: Video 2 and Additional file 3: Video 3, 704 × 576 for 4–5, and 720 × 576 for 6 .

Results show that MAP clustering leads to better per-
formances than the two other clustering methods. We can
also see that hierarchical clustering outperforms affinity
propagation. This is probably due to the fact that hierar-
chical clustering (with single-link) often suffers from the
chain effect. In our case, the chain effect is not so problem-
atic, mostly because one detection has high affinity with
two other detections: one in previous frames the other
in the next frames. This naturally gives clusters a chain
shape. Affinity propagation selects exemplars in each clus-
ter, so the clusters are grouped around exemplars. This
cluster structure is not as suited to our application as the
chain one.

Table 2 Best performances reached by three clustering
algorithms with the same dissimilarity matrix

Videos MAP HAC AP

1 90.9 88.9 76.5

2 81.5 73.4 67.5

3 76.5 67.3 57.6

4 98.1 88.8 82.3

5 98.1 92.3 81.9

6 77.7 79.3 54.0

MAP, presented method; HAC, hierarchical clustering, and AP, affinity
propagation clustering. Best results are in bold and lowest in italic.

The performance of the MAP clustering seems to come
from the fact that it is mostly suited to the video-based
detection situation. The two other methods just use dis-
similarities and no prior on clusters shape, while the
presented MAP model uses a first-order Markov chain
to model clusters and handles false positives in a specific
way.

7.3.2 Performance of our dissimilaritymeasure
Table 3 shows F-measures obtained with four versions of
the presented algorithm. The first (basic) is the base algo-
rithm without tracklets or optical flow, it just uses time,

Table 3 F-measure (in %) of different methods and videos

Video Basic Tracklet OF No prior

1 80.4(6.9) 76.6(8.5) 85.8(2.8) 79.4(6.7)

2 70.8(6.5) 72.1(2.2) 72.5(5.6) 66.4(4.6)

3 69.2(2.9) 63.7(2.5) 68.7(2.5) 67.1(5.6)

4 87.8(6.7) 77.2(10.5) 88.5(7.2) 87.6(6.6)

5 94.8(2.3) 94.4(4.2) 95.4(2.2) 94.6(2.7)

6 75.8(5.9) 74.4(4.3) 77.5(6.0) 72.8(3.5)

Values represent mean and standard deviation of the F-measures for 100 values
of the Pe parameter. Best results are in bold.
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Figure 7 Example of face summarizations given by selecting a representative detection per cluster found, different colors represent
different clusters. Left: 20% of the detected faces of a video (50% for Additional file 3: Video 3), right: selected faces.

appearance, and speed dissimilarities. The second version
(tracklet) is based on the basic version but with the track-
let dissimilarities, it is the same for the third (OF) but
with optical flow instead of tracklet dissimilarities. The
last one (no prior) is like the basic, except it does not use

the prior of the skin color ratio Pf (�ai) in the likelihood
P(zi|T).
The mean and standard deviation of F-measures are

estimated over results obtained by varying the Pe parame-
ter, which is the probability to start (or stop) a cluster at a
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given detection. This parameter is used to force the num-
ber of clusters. For these experiments we take 100 values
of Pe between 0.04 and 25%. Results show that the qual-
ity does not appear to be very sensitive to the large Pe
variation.
Although dataset videos have various false positive rates

(from 1.5 to 11%), we arbitrarily set the false positive
parameter (β) to 1% for all the videos. This is done to avoid
manual adjustment of a priori parameter to each video.
Table 3 shows that the use of optical flow dissimilarities

gives better results compared to the use of dissimilarities
based on tracklets. We can also see that the prior informa-
tion based on skin color pixels improves results due to a
better estimation of false positive cluster.
Concerning the running time, for Additional file 1:

Video 1 (1934 frames and 1725 detections), the face detec-
tor takes 8min 30 s to treat all the frames, the feature
extraction stage (optical-flow version) takes 1min 8 s, the
computation of the dissimilarity matrix takes 8 s, and the
optimization used to find the optimal clustering takes 20 s.
We used a C++ implementation and run the test on a
2.4-GHz processor without parallelization. These figures
give an overview of the different processing times, this
indicates that most of the computation time is used in
detection and image processing tasks.
As a qualitative and applicative result, we show

(Figure 7) three examples of face summarization. After
clustering face detections of a video, with MAP method
(Pe fixed to 1%) and optical-flow dissimilarities, we
remove small clusters and select a representative detec-
tion to build an album of faces. Detections are selected
with a simple algorithm using a score based on detection
size and contrast. As we do not use a re-identification pro-
cess when people re-appear after being out of the field for
a certain period, the main duplicates in faces summariza-
tions are because persons cross several times the field of
view.

7.4 Synthesis
In the main presented experiments, the method based
on the MAP clustering is more suited to our problem
than hierarchical clustering or affinity propagations are.
The movement dissimilarity based on the optical flow
improves the results, more than the tracklet dissimilarity
does in the main cases. Using a skin color term in the face
likelihood enhances clustering quality, by improving false
positive cluster quality.

8 Conclusions
This article proposes a method to cluster face detections
on challenging video sequences. Our method relies on a
data-association framework by resolving a MAP problem.
In the case of a frontal face detector, where detections
are particularly sparse due to head rotations, experiments

show that hat adding movement information to detec-
tion dissimilarities improves the results. Two different
approaches are tested: the first based on short-term track-
ing and the second using optical flow extraction. We also
present a new criteria to evaluate the performances of the
resulting clustering.
Although our method has not reached the required

quality for visual surveillance applications, we present
a starting point for a video face summarization system
based on tracking-by-detection, in scenes where auto-
matic face recognition remains a challenging issue.

Consent
Consent was obtained from the persons appearing in the
videos 1 to 5 used for this publication.
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aAVSS AB Hard from www.eecs.qmul.ac.uk/∼andrea/
avss2007 d.html.
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