679 research outputs found

    Causes of prehospital misinterpretations of ST elevation myocardial infarction

    Get PDF
    Objectives: To determine the causes of software misinterpretation of ST elevation myocardial infarction (STEMI) compared to clinically identified STEMI to identify opportunities to improve prehospital STEMI identification. Methods: We compared ECGs acquired from July 2011 through June 2012 using the LIFEPAK 15 on adult patients transported by the Los Angeles Fire Department. Cases included patients ≥18 years who received a prehospital ECG. Software interpretation of the ECG (STEMI or not) was compared with data in the regional EMS registry to classify the interpretation as true positive (TP), true negative (TN), false positive (FP), or false negative (FN). For cases where classification was not possible using registry data, 3 blinded cardiologists interpreted the ECG. Each discordance was subsequently reviewed to determine the likely cause of misclassification. The cardiologists independently reviewed a sample of these discordant ECGs and the causes of misclassification were updated in an iterative fashion. Results: Of 44,611 cases, 50% were male (median age 65; inter-quartile range 52–80). Cases were classified as 482 (1.1%) TP, 711 (1.6%) FP, 43371 (97.2%) TN, and 47 (0.11%) FN. Of the 711 classified as FP, 126 (18%) were considered appropriate for, though did not undergo, emergent coronary angiography, because the ECG showed definite (52 cases) or borderline (65 cases) ischemic ST elevation, a STEMI equivalent (5 cases) or ST-elevation due to vasospasm (4 cases). The sensitivity was 92.8% [95% CI 90.6, 94.7%] and the specificity 98.7% [95% CI 98.6, 98.8%]. The leading causes of FP were ECG artifact (20%), early repolarization (16%), probable pericarditis/myocarditis (13%), indeterminate (12%), left ventricular hypertrophy (8%), and right bundle branch block (5%). There were 18 additional reasons for FP interpretation (<4% each). The leading causes of FN were borderline ST-segment elevations less than the algorithm threshold (40%) and tall T waves reducing the ST/T ratio below threshold (15%). There were 11 additional reasons for FN interpretation occurring ≤3 times each. Conclusion: The leading causes of FP automated interpretation of STEMI were ECG artifact and non-ischemic causes of ST-segment elevation. FN were rare and were related to ST-segment elevation or ST/T ratio that did not meet the software algorithm threshold

    Size-Dependent Trophic Patterns of Pallid Sturgeon and Shovelnose Sturgeon in a Large River System

    Get PDF
    This study compared patterns of d15N and d13C enrichment of pallid sturgeon Scaphirhynchus albus and shovelnose sturgeon S. platorynchus in the Missouri River, United States, to infer their trophic position in a large river system. We examined enrichment and energy flow for pallid sturgeon in three segments of the Missouri River (Montana/North Dakota, Nebraska/South Dakota, and Nebraska/Iowa) and made comparisons between species in the two downstream segments (Nebraska/South Dakota and Nebraska/Iowa). Patterns in isotopic composition for pallid sturgeon were consistent with gut content analyses indicating an ontogenetic diet shift from invertebrates to fish prey at sizes of .500-mm fork length (FL) in all three segments of the Missouri River. Isotopic patterns revealed shovelnose sturgeon did not experience an ontogenetic shift in diet and used similar prey resources as small (,500-mm FL) pallid sturgeon in the two downstream segments. We found stable isotope analysis to be an effective tool for evaluating the trophic position of sturgeons within a large river food web

    Intercomparison of Nine Micrometeorological Stations during the BEAREX08 Field Campaign

    Get PDF
    Land–atmosphere interactions play a critical role in regulating numerous meteorological, hydrological, and environmental processes. Investigating these processes often requires multiple measurement sites representing a range of surface conditions. Before these measurements can be compared, however, it is imperative that the differences among the instrumentation systems are fully characterized. Using data collected as a part of the 2008 Bushland Evapotranspiration and Agricultural Remote Sensing Experiment (BEAREX08), measurements from nine collocated eddy covariance (EC) systems were compared with the twofold objective of 1) characterizing the interinstrument variation in the measurements, and 2) quantifying the measurement uncertainty associated with each system. Focusing on the three turbulent fluxes (heat, water vapor, and carbon dioxide), this study evaluated the measurement uncertainty using multiple techniques. The results of the analyses indicated that there could be substantial variability in the uncertainty estimates because of the advective conditions that characterized the study site during the afternoon and evening hours. However, when the analysis was limited to nonadvective, quasi-normal conditions, the response of the nine EC stations were remarkably similar. For the daytime period, both the method of Hollinger and Richardson and the method of Mann and Lenschow indicated that the uncertainty in the measurements of sensible heat, latent heat, and carbon dioxide flux were approximately 13 W m‒2, 27 W m‒2, and 0.10 mg m‒2 s‒1, respectively. Based on the results of this study, it is clear that advection can greatly increase the uncertainty associated with EC flux measurements. Since these conditions, as well as other phenomena that could impact the measurement uncertainty, are often intermittent, it may be beneficial to conduct uncertainty analyses on an ongoing basis

    Accelerating Space Life Sciences: Successes and Challenges of Biospecimen and Data Sharing

    Get PDF
    NASA's current human space flight research is directed towards enabling human space exploration beyond Low Earth Orbit (LEO). To that end, NASA Space Flight Payload Projects; Rodent Research, Cell Science, and Microbial Labs, flown on the International Space Station (ISS), benefit the global life sciences and commercial space communities. Verified data sets, science results, peer-reviewed publications, and returned biospecimens, collected and analyzed for flight and ground investigations, are all part of the knowledge base collected by NASA's Human Exploration and Operations Mission Directorate's Space Life and Physical Sciences Research and Applications (SLPSRA) Division, specifically the Human Research and Space Biology Programs. These data and biospecimens are made available through the public Life Sciences Data Archive (LSDA) website to promote basic discovery, pre-clinical and clinical science.The NASA Institutional Scientific Collection (ISC), stores flight and ground biospecimens from Space Shuttle and ISS programs. These specimens are curated and managed by the Ames Life Sciences Data Archive (ALSDA), an internal node of NASA's LSDA. The ISC stores over 30,000 specimens from experiments dating from 1984 to present. Currently available specimens include tissues from the circulatory, digestive, endocrine, excretory, integumentary, muscular, neurosensory, reproductive, respiratory and skeletal systems.NASA's biospecimen collection represents a unique and limited resource of unique spaceflight payload and ground control research subjects. These specimens are harvested according to well established SOPs that maintain their quality and integrity. Once the primary scientific objectives have been met, the remaining specimens are made available to provide secondary opportunities for complementary studies or new investigations to broaden research without large expenditures of time or resources. Website: https://lsda.jsc.nasa.gov

    Effects of Concurrent Resistance and Aerobic Training on Load-Bearing Performance and the Army Physical Fitness Test

    No full text
    The purpose of this research was to determine the effects of high intensity endurance training (ET) and resistance training (RT) alone and in combination on various military tasks. Thirty-five male soldiers were randomly assigned to one of four training groups: total body resistance training plus endurance training (RT + ET), upper body resistance training plus endurance training [UB + ET), RT only, and ET only. Training was performed 4 days per week for 12 weeks. Testing occurred before and after the 12-week training regimen. All groups significantly improved push-up performance, whereas only the RT + ET group did not improve sit-up performance. The groups that included ET significantly decreased 2-mile run time, however, only RT + ET and UB + ET showed improved loaded 2-mile run time. Leg power increased for groups that included lower body strengthening exercises (RT and RT + ET). Army Physical Fitness Test performance, loaded running, and leg power responded positively to training, however, it appears there is a high degree of specificity when concurrent training regimens are implemented

    Recombination in Streptococcus pneumoniae Lineages Increase with Carriage Duration and Size of the Polysaccharide Capsule

    Get PDF
    Streptococcus pneumoniae causes a high burden of invasive pneumococcal disease (IPD) globally, especially in children from resource-poor settings. Like many bacteria, the pneumococcus can import DNA from other strains or even species by transformation and homologous recombination, which has allowed the pneumococcus to evade clinical interventions such as antibiotics and pneumococcal conjugate vaccines (PCVs). Pneumococci are enclosed in a complex polysaccharide capsule that determines the serotype; the capsule varies in size and is associated with properties including carriage prevalence and virulence. We determined and quantified the association between capsule and recombination events using genomic data from a diverse collection of serotypes sampled in Malawi. We determined both the amount of variation introduced by recombination relative to mutation (the relative rate) and how many individual recombination events occur per isolate (the frequency). Using univariate analyses, we found an association between both recombination measures and multiple factors associated with the capsule, including duration and prevalence of carriage. Because many capsular factors are correlated, we used multivariate analysis to correct for collinearity. Capsule size and carriage duration remained positively associated with recombination, although with a reduced P value, and this effect may be mediated through some unassayed additional property associated with larger capsules. This work describes an important impact of serotype on recombination that has been previously overlooked. While the details of how this effect is achieved remain to be determined, it may have important consequences for the serotype-specific response to vaccines and other interventions

    Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area

    Get PDF
    Application and validation of many thermal remote sensing-based energy balance models involve the use of local meteorological inputs of incoming solar radiation, wind speed and air temperature as well as accurate land surface temperature (LST), vegetation cover and surface flux measurements. For operational applications at large scales, such local information is not routinely available. In addition, the uncertainty in LST estimates can be several degrees due to sensor calibration issues, atmospheric effects and spatial variations in surface emissivity. Time differencing techniques using multi-temporal thermal remote sensing observations have been developed to reduce errors associated with deriving the surface- air temperature gradient, particularly in complex landscapes. The Dual-Temperature-Difference (DTD) method addresses these issues by utilizing the Two-Source Energy Balance (TSEB) model of Norman et al. (1995) [1], and is a relatively simple scheme requiring meteorological input from standard synoptic weather station networks or mesoscale modeling. A comparison of the TSEB and DTD schemes is performed using LST and flux observations from eddy covariance (EC) flux towers and large weighing lysimeters (LYs) in irrigated cotton fields collected during BEAREX08, a large-scale field experiment conducted in the semi-arid climate of the Texas High Plains as described by Evett et al. (2012) [2]. Model output of the energy fluxes (i.e., net radiation, soil heat flux, sensible and latent heat flux) generated with DTD and TSEB using local and remote meteorological observations are compared with EC and LY observations. The DTD method is found to be significantly more robust in flux estimation compared to the TSEB using the remote meteorological observations. However, discrepancies between model and measured fluxes are also found to be significantly affected by the local inputs of LST and vegetation cover and the representativeness of the remote sensing observations with the local flux measurement footprint

    DNA replication stress restricts ribosomal DNA copy number

    Get PDF
    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number
    corecore