43 research outputs found

    Primate epididymis-specific proteins: characterization of ESC42, a novel protein containing a trefoil-like motif in monkey and human

    Get PDF
    Epididymal secreted proteins promote sperm maturation and fertilizing capacity by interacting with sperm during passage through the epididymis. Here we investigate the molecular basis of sperm maturation by isolating cDNA clones for novel epididymis-specific expressed sequences. Thirty-six novel cDNAs were isolated and sequenced from a subtracted Macaca mulatta epididymis library. The clones encode proteins with a range of motifs characteristic of protein-modifying enzymes, protease inhibitors, hydrophobic ligand-binding and transport proteins, extracellular matrix-interacting proteins, and transcription regulatory factors. The full length coding sequences were obtained for 11 clones representing a range of abundance levels. Expression of each is regionally localized and androgen regulated. The most abundant, ESC42, contains a cysteine-rich region similar to the signature binding domain of the trefoil family of motogenic wound repair proteins. The monkey and human proteins are nearly 90% identical. Immunohistochemical staining revealed that the protein is most abundant in the epithelium of the caput and is also present in the lumen and bound to sperm. The ESC42 gene, located on chromosome 20q11, contains two exons encoding two nearly identical predicted signal peptides and a third exon encoding the rest of the protein

    LCN6, a novel human epididymal lipocalin

    Get PDF
    BACKGROUND: The lipocalin (LCN) family of structurally conserved hydrophobic ligand binding proteins is represented in all major taxonomic groups from prokaryotes to primates. The importance of lipocalins in reproduction and the similarity to known epididymal lipocalins prompted us to characterize the novel human epididymal LCN6. METHODS AND RESULTS: LCN6 cDNA was identified by database analysis in a comprehensive human library sequencing program. Macaca mulatta (rhesus monkey) cDNA was obtained from an epididymis cDNA library and is 93% homologous to the human. The gene is located on chromosome 9q34 adjacent LCN8 and LCN5. LCN6 amino acid sequence is most closely related to LCN5, but the LCN6 beta-barrel structure is best modeled on mouse major urinary protein 1, a pheromone binding protein. Northern blot analysis of RNAs isolated from 25 human tissues revealed predominant expression of a 1.0 kb mRNA in the epididymis. No other transcript was detected except for weak expression of a larger hybridizing mRNA in urinary bladder. Northern hybridization analysis of LCN6 mRNA expression in sham-operated, castrated and testosterone replaced rhesus monkeys suggests mRNA levels are little affected 6 days after castration. Immunohistochemical staining revealed that LCN6 protein is abundant in the caput epithelium and lumen. Immunofluorescent staining of human spermatozoa shows LCN6 located on the head and tail of spermatozoa with the highest concentration of LCN6 on the post-acrosomal region of the head, where it appeared aggregated into large patches. CONCLUSIONS: LCN6 is a novel lipocalin closely related to Lcn5 and Lcn8 and these three genes are likely products of gene duplication events that predate rodent-primate divergence. Predominant expression in the epididymis and location on sperm surface are consistent with a role for LCN6 in male fertility

    Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>An open-label Phase 1 study of recombinant prime-boost poxviruses targeting CEA and MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability and obtain preliminary data on immune response and survival.</p> <p>Patients and methods</p> <p>Ten patients with advanced pancreatic cancer were treated on a Phase I clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA) and mucin-1 (MUC-1) with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM) (PANVAC-V) and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F). Patients were primed with PANVAC-V followed by three booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter. Monthly booster vaccinations for up to 12 months were provided for patients without progressive disease. Peripheral blood was collected before, during and after vaccinations for immune analysis.</p> <p>Results</p> <p>The most common treatment-related adverse events were mild injection-site reactions. Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell responses were observed in 5 out of 8 evaluable patients (62.5%). Median overall survival was 6.3 months and a significant increase in overall survival was noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; <it>P </it>= .002).</p> <p>Conclusion</p> <p>Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific immune responses in patients with advanced pancreatic cancer.</p

    Genetic variation in insulin-like growth factor signaling genes and breast cancer risk among BRCA1 and BRCA2 carriers

    Get PDF
    Abstract Introduction Women who carry mutations in BRCA1 and BRCA2 have a substantially increased risk of developing breast cancer as compared with the general population. However, risk estimates range from 20 to 80%, suggesting the presence of genetic and/or environmental risk modifiers. Based on extensive in vivo and in vitro studies, one important pathway for breast cancer pathogenesis may be the insulin-like growth factor (IGF) signaling pathway, which regulates both cellular proliferation and apoptosis. BRCA1 has been shown to directly interact with IGF signaling such that variants in this pathway may modify risk of cancer in women carrying BRCA mutations. In this study, we investigate the association of variants in genes involved in IGF signaling and risk of breast cancer in women who carry deleterious BRCA1 and BRCA2 mutations. Methods A cohort of 1,665 adult, female mutation carriers, including 1,122 BRCA1 carriers (433 cases) and 543 BRCA2 carriers (238 cases) were genotyped for SNPs in IGF1, IGF1 receptor (IGF1R), IGF1 binding protein (IGFBP1, IGFBP2, IGFBP5), and IGF receptor substrate 1 (IRS1). Cox proportional hazards regression was used to model time from birth to diagnosis of breast cancer for BRCA1 and BRCA2 carriers separately. For linkage disequilibrium (LD) blocks with multiple SNPs, an additive genetic model was assumed; and for single SNP analyses, no additivity assumptions were made. Results Among BRCA1 carriers, significant associations were found between risk of breast cancer and LD blocks in IGF1R (global P = 0.011 for LD block 2 and global P = 0.012 for LD block 11). Among BRCA2 carriers, an LD block in IGFBP2 (global P = 0.0145) was found to be associated with the time to breast cancer diagnosis. No significant LD block associations were found for the other investigated genes among BRCA1 and BRCA2 carriers. Conclusions This is the first study to investigate the role of genetic variation in IGF signaling and breast cancer risk in women carrying deleterious mutations in BRCA1 and BRCA2. We identified significant associations in variants in IGF1R and IRS1 in BRCA1 carriers and in IGFBP2 in BRCA2 carriers. Although there is known to be interaction of BRCA1 and IGF signaling, further replication and identification of causal mechanisms are needed to better understand these associations

    Personalized early detection and prevention of breast cancer: ENVISION consensus statement

    Get PDF
    Abstract: The European Collaborative on Personalized Early Detection and Prevention of Breast Cancer (ENVISION) brings together several international research consortia working on different aspects of the personalized early detection and prevention of breast cancer. In a consensus conference held in 2019, the members of this network identified research areas requiring development to enable evidence-based personalized interventions that might improve the benefits and reduce the harms of existing breast cancer screening and prevention programmes. The priority areas identified were: 1) breast cancer subtype-specific risk assessment tools applicable to women of all ancestries; 2) intermediate surrogate markers of response to preventive measures; 3) novel non-surgical preventive measures to reduce the incidence of breast cancer of poor prognosis; and 4) hybrid effectiveness–implementation research combined with modelling studies to evaluate the long-term population outcomes of risk-based early detection strategies. The implementation of such programmes would require health-care systems to be open to learning and adapting, the engagement of a diverse range of stakeholders and tailoring to societal norms and values, while also addressing the ethical and legal issues. In this Consensus Statement, we discuss the current state of breast cancer risk prediction, risk-stratified prevention and early detection strategies, and their implementation. Throughout, we highlight priorities for advancing each of these areas

    Key steps for effective breast cancer prevention

    Get PDF

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore