283 research outputs found

    An artificial immune system for fuzzy-rule induction in data mining

    Get PDF
    This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the entire training set, but also the affinity between the rule and the new example. This affinity must be greater than a threshold in order for the fuzzy rule to be activated, and it is proposed an adaptive procedure for computing this threshold for each rule. This paper reports results for the proposed algorithm in several data sets. Results are analyzed with respect to both predictive accuracy and rule set simplicity, and are compared with C4.5rules, a very popular data mining algorithm

    Spatial distribution of bed variables, animal welfare indicators, and milk production in a closed compost-bedded pack barn with a negative tunnel ventilation system

    Get PDF
    This research aimed to characterize, evaluate and compare the spatial distribution of the leading bed variables, animal welfare indicators, and milk production in a closed compost-bedded pack barn (CBP) with a negative tunnel ventilation system, for summer and winter periods. The study was carried out in a CBP located in the Zona da Mata region, Minas Gerais, Brazil. The geostatistical modeling technique evaluated the variables of temper ature, moisture content, and pH (on the surface and depth of 0.20m) across the length of the bed. Bed samples were characterized for carbon (C), nitrogen (N), and C:N ratio. Cows housed in the CBP were assessed for locomotion and hygiene scores and average milk production. To evaluate the thermoregulation of the cows, the respiratory rate (RR) and surface temperature (ST) were measured. Geostatistical analysis showed spatial dependence and the non-uniformity of the spatial distribution of bed variables. The worst levels of bed tem perature and moisture were found in the regions close to the evaporative cooling plate, surrounding the feeding alley, and in the region with the highest cow stocking. The C:N ratio, obtained in both climatic seasons of the year, remained outside the recommended range for ideal composting. During the summer and winter, the bed variables’ values suggest that the material was below levels for optimal composting; however, the aerated inner layer was biologically active. The high animal density significantly impacted the worsening of the bed moisture content and internal temperature. In general, dairy cows showed adequate hygiene (score of 1 and 2) and locomotion (score of 0 and 1) scores for the two climatic seasons evaluated, indicating good welfare conditions. In relation to RR and ST, the summer period presented less favorable environmental conditions. During winter, the average milk production was 28.1 ± 7.2 kg day-1, and during summer, it was 26.9 ± 6.7 kg day-1

    Invisible Z-Boson Decays at e+e- Colliders

    Full text link
    The measurement of the invisible Z-boson decay width at e+e- colliders can be done "indirectly", by subtracting the Z-boson visible partial widths from the Z-boson total width, or "directly", from the process e+e- -> \gamma \nu \bar{\nu}. Both procedures are sensitive to different types of new physics and provide information about the couplings of the neutrinos to the Z-boson. At present, measurements at LEP and CHARM II are capable of constraining the left-handed Z\nu\nu-coupling, 0.45 <~ g_L <~ 0.5, while the right-handed one is only mildly bounded, |g_R| <= 0.2. We show that measurements at a future e+e- linear collider at different center-of-mass energies, \sqrt{s} = MZ and \sqrt{s}s ~ 170 GeV, would translate into a markedly more precise measurement of the Z\nu\nu-couplings. A statistically significant deviation from Standard Model predictions will point toward different new physics mechanisms, depending on whether the discrepancy appears in the direct or the indirect measurement of the invisible Z-width. We discuss some scenarios which illustrate the ability of different invisible Z-boson decay measurements to constrain new physics beyond the Standard Model

    A bacteriophage detection tool for viability assessment of Salmonella cells

    Get PDF
    Available online 7 September 2013Salmonellosis, one of the most common food and water-borne diseases, has a major global health and economic impact. Salmonella cells present high infection rates, persistence over inauspicious conditions and the potential to preserve virulence in dormant states when cells are viable but non-culturable (VBNC). These facts are challenging for current detection methods. Culture methods lack the capacity to detect VBNC cells, while biomolecular methods (e.g. DNA- or protein-based) hardly distinguish between dead innocuous cells and their viable lethal counterparts. This work presents and validates a novel bacteriophage (phage)-based microbial detection tool to detect and assess Salmonella viability. Salmonella Enteritidis cells in a VBNC physiological state were evaluated by cell culture, flow-cytometry and epifluorescence microscopy, and further assayed with a biosensor platform. Free PVP-SE1 phages in solution showed the ability to recognize VBNC cells, with no lysis induction, in contrast to the minor recognition of heat-killed cells. This ability was confirmed for immobilized phages on gold surfaces, where the phage detection signal follows the same trend of the concentration of viable plus VBNC cells in the sample. The phage probe was then tested in a magnetoresistive biosensor platform allowing the quantitative detection and discrimination of viable and VBNC cells from dead cells, with high sensitivity. Signals arising from 3 to 4 cells per sensor were recorded. In comparison to a polyclonal antibody that does not distinguish viable from dead cells, the phage selectivity in cell recognition minimizes false-negative and false-positive results often associated with most detection methods

    Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Gluino-Gluon Scattering in Supersymmetric Yang-Mills Theory

    Full text link
    We present the two-loop QCD helicity amplitudes for quark-gluon scattering, and for quark-antiquark annihilation into two gluons. These amplitudes are relevant for next-to-next-to-leading order corrections to (polarized) jet production at hadron colliders. We give the results in the `t Hooft-Veltman and four-dimensional helicity (FDH) variants of dimensional regularization. The transition rules for converting the amplitudes between the different variants are much more intricate than for the previously discussed case of gluon-gluon scattering. Summing our two-loop expressions over helicities and colors, and converting to conventional dimensional regularization, gives results in complete agreement with those of Anastasiou, Glover, Oleari and Tejeda-Yeomans. We describe the amplitudes for 2 to 2 scattering in pure N=1 supersymmetric Yang-Mills theory, obtained from the QCD amplitudes by modifying the color representation and multiplicities, and verify supersymmetry Ward identities in the FDH scheme.Comment: 77 pages. v2: corrected errors in eqs. (3.7) and (3.8) for one-loop assembly; remaining results unaffecte

    Mapping the potential for pumped storage using existing lower reservoirs

    Get PDF
    The increasing utilization of wind and solar power sources to lower CO2 emissions in the electric sector is causing a growing disparity between electricity supply and demand. Consequently, there is a heightened interest in affordable energy storage solutions to address this issue. Pumped Hydropower Storage (PHS) emerges as a promising option, capable of providing both short and long-term energy storage at a reasonable cost, while also offering the advantage of freshwater storage. To identify potential PHS locations in Brazil existing hydroelectric reservoirs as the lower reservoirs, we employed an innovative methodology that combines (i) plant-siting model that leverages high-resolution topographical and hydrological data to identify the most promising sites for further studies. (ii) An economic methodology was applied to configure PSH projects identified by the plant-siting model in terms of their installed capacity and discharge time, and to select the most attractive projects. (iii) A comprehensive analysis of the socio-environmental impacts of the projects was carried out, which enables the elimination of projects with severe impacts. Results created a ranking of 5600 mutually exclusive projects by net present value (NPV). The highest NPV is 2145 USD which refers to a PHS plant in the Doce Basin and Salto Grande dam as the lower reservoir. The upper reservoir stores 0.36 km3 of water and a 75 m high dam, the PHS has a 2 km tunnel, a 1 GW power capacity and discharge rate of 220 h. The paper shows a vast potential for weekly, monthly, and seasonal PHS with existing lower reservoirs in Brazil

    Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts

    Get PDF
    We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for "observed" particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg to gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD beta function in the FDH and dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include
    • …
    corecore