10,828 research outputs found

    Evidence for a Massive Neutron Star from a Radial-Velocity Study of the Companion to the Black Widow Pulsar PSR B1957+20

    Get PDF
    The most massive neutron stars constrain the behavior of ultra-dense matter, with larger masses possible only for increasingly stiff equations of state. Here, we present evidence that the black widow pulsar, PSR B1957+20, has a high mass. We took spectra of its strongly irradiated companion and found an observed radial-velocity amplitude of K_obs=324+/-3 km/s. Correcting this for the fact that, due to the irradiation, the center of light lies inward relative to the center of mass, we infer a true radial-velocity amplitude of K_2=353+/-4 km/s and a mass ratio q=M_PSR/M_2=69.2+/-0.8. Combined with the inclination i=65+/-2 deg inferred from models of the lightcurve, our best-fit pulsar mass is M_PSR=2.40+/-0.12 M_sun. We discuss possible systematic uncertainties, in particular in the lightcurve modeling. Taking an upper limit of i<85 deg based on the absence of radio eclipses at high frequency, combined with a conservative lower-limit to the motion of the center of mass, K_2>343 km/s (q>67.3), we infer a lower limit to the pulsar mass of M_PSR>1.66 M_sun.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ; revision includes more detail on the spectral classification and discussion of other recent high neutron-star masse

    Translocating the blood-brain barrier using electrostatics

    Get PDF
    Copyright © 2012 Ribeiro,Domingues, Freire,Santos and Castanho. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.Mammalian cell membranes regulate homeostasis, protein activity, and cell signaling. The charge at the membrane surface has been correlated with these key events. Although mammalian cells are known to be slightly anionic, quantitative information on the membrane charge and the importance of electrostatic interactions in pharmacokinetics and pharmacodynamics remain elusive. Recently, we reported for the first time that brain endothelial cells (EC) are more negatively charged than human umbilical cord cells, using zeta-potential measurements by dynamic light scattering. Here, we hypothesize that anionicity is a key feature of the blood-brain barrier (BBB) and contributes to select which compounds cross into the brain. For the sake of comparison, we also studied the membrane surface charge of blood components—red blood cells (RBC), platelets, and peripheral blood mononuclear cells (PBMC).To further quantitatively correlate the negative zeta-potential values with membrane charge density, model membranes with different percentages of anionic lipids were also evaluated. From all the cells tested, brain cell membranes are the most anionic and those having their lipids mostly exposed, which explains why lipophilic cationic compounds are more prone to cross the blood-brain barrier.Fundação para a Ciência e Tecnologia — Ministério da Educação e Ciência (FCT-MEC, Portugal) is acknowledged for funding (including fellowships SFRH/BD/42158/2007 to Marta M.B. Ribeiro, SFRH/BD/41750/2007 to Marco M. Domingues and SFRH/BD/70423/2010 to João M. Freire) and project PTDC/QUI-BIQ/119509/2010. Marie Curie Industry-Academia Partnerships and Pathways (European Commission) is also acknowledged for funding (FP7-PEOPLE-2007-3-1-IAPP, Project 230654)

    Young Radio Pulsars in Galactic Globular Clusters

    Get PDF
    Currently three isolated radio pulsars and one binary radio pulsar with no evidence of any previous recycling are known in 97 surveyed Galactic globular clusters. As pointed out by Lyne et al., the presence of these pulsars cannot be explained by core-collapse supernovae, as is commonly assumed for their counterparts in the Galactic disk. We apply a Bayesian analysis to the results from surveys for radio pulsars in globular clusters and find the number of potentially observable non-recycled radio pulsars present in all clusters to be < 3600. Accounting for beaming and retention considerations, the implied birth rate for any formation scenario for all 97 clusters is < 0.25 pulsars per century assuming a Maxwellian distribution of velocities with a dispersion of 10 km s^{-1}. The implied birth rates for higher velocity dispersions are substantially higher than inferred for such pulsars in the Galactic disk. This suggests that the velocity dispersion of young pulsars in globular clusters is significantly lower than those of disk pulsars. These numbers may be substantial overestimates due to the fact that the currently known sample of young pulsars is observed only in metal-rich clusters. We propose that young pulsars may only be formed in globular clusters with metallicities with log[Fe/H] > -0.6. In this case, the potentially observable population of such young pulsars is 447^{+1420}_{-399} (the error bars give the 95% confidence interval) and their birth rate is 0.012^{+0.037}_{-0.010} pulsars per century. The mostly likely creation scenario to explain these pulsars is the electron capture supernova of a OMgNe white dwarf.Comment: 13 Pages, 6 Figures, 4 Tables, to appear in Ap

    Confining potential in a color dielectric medium with parallel domain walls

    Get PDF
    We study quark confinement in a system of two parallel domain walls interpolating different color dielectric media. We use the phenomenological approach in which the confinement of quarks appears considering the QCD vacuum as a color dielectric medium. We explore this phenomenon in QCD_2, where the confinement of the color flux between the domain walls manifests, in a scenario where two 0-branes (representing external quark and antiquark) are connected by a QCD string. We obtain solutions of the equations of motion via first-order differential equations. We find a new color confining potential that increases monotonically with the distance between the domain walls.Comment: RevTex4, 5 pages, 1 figure; version to appear in Int. J. Mod. Phys.

    Production, breeding and potential of cowpea crop in Brazil.

    Get PDF
    About 50 years ago cowpea was reported as a relatively minor tropical legume. However, in the last years, it has been emerging as one of the most important food legume of the 21st century (SINGH, 2010). Brazil is not out of this panorama. Brazilian agriculture is undergoing major technological changes and, in addition, globalization in agribusiness has caused impacts on the production chain of several crops, particularly those heavily dependent on the use of a large volume of agricultural inputs, mainly fertilizers and pesticides. Such crops have had a higher production cost each year. On the other hand, this situation has brought new opportunities. Business farmers have sought new alternatives for their production arrangements. In this context cowpea constitutes one of the best options.bitstream/item/85620/1/Doc-216-Production.pd

    Participação no XI Met-Encontro nacional sobre metodologias de laboratório.

    Get PDF
    bitstream/CNPA/18316/1/DOC161.pd

    Can we see pulsars around Sgr A*? - The latest searches with the Effelsberg telescope

    Full text link
    Radio pulsars in relativistic binary systems are unique tools to study the curved space-time around massive compact objects. The discovery of a pulsar closely orbiting the super-massive black hole at the centre of our Galaxy, Sgr A*, would provide a superb test-bed for gravitational physics. To date, the absence of any radio pulsar discoveries within a few arc minutes of Sgr A* has been explained by one principal factor: extreme scattering of radio waves caused by inhomogeneities in the ionized component of the interstellar medium in the central 100 pc around Sgr A*. Scattering, which causes temporal broadening of pulses, can only be mitigated by observing at higher frequencies. Here we describe recent searches of the Galactic centre region performed at a frequency of 18.95 GHz with the Effelsberg radio telescope.Comment: 3 pages, 2 figures, Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and Opportunities after 80 years", 201
    corecore