1,320 research outputs found

    A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture.

    Get PDF
    Recent studies have identified a small number of genomic rearrangements that occur frequently in the general population. Bioinformatics tools are now available for systematic genome-wide surveys of higher-order structures predisposing to such common variations in genomic architecture. Segmental duplications (SDs) constitute up to 5 per cent of the genome and play an important role in generating additional rearrangements and in disease aetiology. We conducted a genome-wide database search for a form of SD, palindromic segmental duplications (PSDs), which consist of paired, inverted duplications, and which predispose to inversions, duplications and deletions. The survey was complemented by a search for SDs in tandem orientation (TSDs) that can mediate duplications and deletions but not inversions. We found more than 230 distinct loci with higher-order genomic structure that can mediate genomic variation, of these about 180 contained a PSD. A number of these sites were previously identified as harbouring common inversions or as being associated with specific genomic diseases characterised by duplication, deletions or inversions. Most of the regions, however, were previously unidentified; their characterisation should identify further common rearrangements and may indicate localisations for additional genomic disorders. The widespread distribution of complex chromosomal architecture suggests a potentially high degree of plasticity of the human genome and could uncover another level of genetic variation within human populations

    ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest.

    Get PDF
    Next-generation sequencing technology (NGS) enables the discovery of nearly all genetic variants present in a genome. A subset of these variants, however, may have poor sequencing quality due to limitations in NGS or variant callers. In genetic studies that analyze a large number of sequenced individuals, it is critical to detect and remove those variants with poor quality as they may cause spurious findings. In this paper, we present ForestQC, a statistical tool for performing quality control on variants identified from NGS data by combining a traditional filtering approach and a machine learning approach. Our software uses the information on sequencing quality, such as sequencing depth, genotyping quality, and GC contents, to predict whether a particular variant is likely to be false-positive. To evaluate ForestQC, we applied it to two whole-genome sequencing datasets where one dataset consists of related individuals from families while the other consists of unrelated individuals. Results indicate that ForestQC outperforms widely used methods for performing quality control on variants such as VQSR of GATK by considerably improving the quality of variants to be included in the analysis. ForestQC is also very efficient, and hence can be applied to large sequencing datasets. We conclude that combining a machine learning algorithm trained with sequencing quality information and the filtering approach is a practical approach to perform quality control on genetic variants from sequencing data

    The complex genetic basis of simple behavior

    Get PDF
    Genetic approaches to dissecting complex traits in animal models increasingly use transcript levels as a molecular phenotype and as validation for predictions of gene function. A recent study in BMC Biology using these approaches shows the complexity of the genetic contribution to aggressive behavior in Drosophila

    High-throughput, Efficient, and Unbiased Capture of Small RNAs from Low-input Samples for Sequencing.

    Get PDF
    MicroRNAs hold great promise as biomarkers of disease. However, there are few efficient and robust methods for measuring microRNAs from low input samples. Here, we develop a high-throughput sequencing protocol that efficiently captures small RNAs while minimizing inherent biases associated with library production. The protocol is based on early barcoding such that all downstream manipulations can be performed on a pool of many samples thereby reducing reagent usage and workload. We show that the optimization of adapter concentrations along with the addition of nucleotide modifications and random nucleotides increases the efficiency of small RNA capture. We further show, using unique molecular identifiers, that stochastic capture of low input RNA rather than PCR amplification influences the biased quantitation of intermediately and lowly expressed microRNAs. Our improved method allows the processing of tens to hundreds of samples simultaneously while retaining high efficiency quantitation of microRNAs in low input samples from tissues or bodily fluids

    Comparative growth and static allometry in the genus Chlorocebus

    Full text link
    Characterizing variation in growth across populations is critical to understanding multiple aspects of development in primates, including within-taxon developmental plasticity and the evolution of life history patterns. Growth in wild primates has often been reported and directly compared across larger taxonomic groups and within social groups, but comparisons are rarely investigated across widely dispersed populations of a single taxon. With the Vervet Phenome-Genome Project and the International Vervet Research Consortium, we trapped 936 vervet monkeys of all ages representing three populations (Kenyan pygerythrus, South African pygerythrus, and sabaeus from St. Kitts & Nevis). We gathered 10 different body measurements from each including mass, body breadth and length, segmental limb lengths, and chest circumference. To gain a better understanding of how ontogenetic patterns vary in these populations, we calculated bivariate allometry coefficients, derived using PCA on log-transformed and z-standardized trait values, and compared them to isometric vector coefficients. Within all population samples, around weaning age most traits showed a negative allometric relationship to body length. As each population ages, however, distinct patterns emerge, showing population differences in onset and intensity of growth among traits. In concordance with other analyses on growth in these populations, our results suggest that there exist relative differences in patterns of growth between Chlorocebus populations, further suggesting selection for unique developmental pathways in each

    Patient Choice in Acute Care

    Get PDF
    Consumer healthcare information plays a critical \ role in informing patients who participate in or make healthcare \ decisions for themselves without direct supervision of a healthcare \ professional. One such example is the choice of facility for \ acute care, prototypically between a fully equipped emergency \ care department (ED) at a hospital and a more convenient \ but less capable urgent care (UC) or retail clinic. We model \ a strategic patient making this decision taking into account the \ limited medical information and convenience factors that affect \ the patient’s decision. This model is then used to inform the \ pricing decision made by the manager of the UC. We show that \ a separating equilibrium, in which all patients self-triaged as noncritical \ choose to go to the UC first, dominates pooling equilibria \ for moderate error rates in self-triage. We analyze the separating \ equilibrium to examine the effect of consumer health information \ (CHI) systems, and show that as the quality of the CHI decreases \ and the error rates go up, the co-pay for an UC decreases, the \ facility is smaller, and makes less profit

    The static allometry of sexual and non-sexual traits in vervet monkeys

    Full text link
    Sexual traits vary tremendously in static allometry. This variation may be explained in part by body size-related differences in the strength of selection. We tested this hypothesis in two populations of vervet monkeys, using estimates of the level of condition dependence for different morphological traits as a proxy for body size-related variation in the strength of selection. In support of the hypothesis, we found that the steepness of allometric slopes increased with the level of condition dependence. One trait of particular interest, the penis, had shallow allometric slopes and low levels of condition dependence, in agreement with one of the most consistent patterns yet detected in the study of allometry, namely that of genitalia exhibiting shallow allometries.This research was supported by NIH grant R01RR0163009
    • 

    corecore