88 research outputs found

    The U-tube: A New Paradigm for Borehole Fluid Sampling

    Get PDF

    Stepping into the Same River Twice: Field Evidence for the Repeatability of a CO2 Injection Test

    Get PDF
    A single well characterisation test was conducted at the CO2CRC Otway storage site in Victoria, Australia, in 2011 and repeated in 2014. The near-well permeability was found to have declined nearly 60% since the 2011 test, while the residual saturation inferred from a variety of techniques was lower in 2014. There was a significant change in water chemistry, suggesting an alteration of near-well reservoir properties. Possible reasons for these changes are explored, and the implications for other field tests are discussed

    Using oxygen isotopes to quantitatively assess residual CO2 saturation during the CO2CRC Otway Stage 2B Extension residual saturation test

    Get PDF
    Residual CO2 trapping is a key mechanism of secure CO2 storage, an essential component of the Carbon Capture and Storage technology. Estimating the amount of CO2 that will be residually trapped in a saline aquifer formation remains a significant challenge. Here, we present the first oxygen isotope ratio (δ18O) measurements from a single-well experiment, the CO2CRC Otway 2B Extension, used to estimate levels of residual trapping of CO2. Following the initiation of the drive to residual saturation in the reservoir, reservoir water δ18O decreased, as predicted from the baseline isotope ratios of water and CO2, over a time span of only a few days. The isotope shift in the near-wellbore reservoir water is the result of isotope equilibrium exchange between residual CO2 and water. For the region further away from the well, the isotopic shift in the reservoir water can also be explained by isotopic exchange with mobile CO2 from ahead of the region driven to residual, or continuous isotopic exchange between water and residual CO2 during its back-production, complicating the interpretation of the change in reservoir water δ18O in terms of residual saturation. A small isotopic distinction of the baseline water and CO2 δ18O, together with issues encountered during the field experiment procedure, further prevents the estimation of residual CO2 saturation levels from oxygen isotope changes without significant uncertainty. The similarity of oxygen isotope-based near-wellbore saturation levels and independent estimates based on pulsed neutron logging indicates the potential of using oxygen isotope as an effective inherent tracer for determining residual saturation on a field scale within a few days

    B-Virus (Cercopithecine herpesvirus 1) Infection in Humans and Macaques: Potential for Zoonotic Disease

    Get PDF
    Nonhuman primates are widely used in biomedical research because of their genetic, anatomic, and physiologic similarities to humans. In this setting, human contact directly with macaques or with their tissues and fluids sometimes occurs. Cercopithecine herpesvirus 1 (B virus), an alphaherpesvirus endemic in Asian macaques, is closely related to herpes simplex virus (HSV). Most macaques carry B virus without overt signs of disease. However, zoonotic infection with B virus in humans usually results in fatal encephalomyelitis or severe neurologic impairment. Although the incidence of human infection with B virus is low, a death rate of >70% before the availability of antiviral therapy makes this virus a serious zoonotic threat. Knowledge of the clinical signs and risk factors for human B-virus disease allows early initiation of antiviral therapy and prevents severe disease or death

    Heletz experimental site overview, characterization and data analysis for CO2 injection and geological storage

    Get PDF
    International audienceThis paper provides an overview of the site characterization work at the Heletz site, in preparation to scientifically motivated CO2 injection experiments. The outcomes are geological and hydrogeological models with associated medium properties and baseline conditions. The work has consisted on first re-analyzing the existing data base from ∼40 wells from the previous oil exploration studies, based on which a 3-dimensional structural model was constructed along with first estimates of the properties. The CO2 injection site is located on the saline edges of the Heletz depleted oil field. Two new deep (>1600 m) wells were drilled within the injection site and from these wells a detailed characterization program was carried out, including coring, core analyses, fluid sampling, geophysical logging, seismic survey, in situ hydraulic testing and measurement of the baseline pressure and temperature. The results are presented and discussed in terms of characteristics of the reservoir and cap-rock, the mineralogy, water composition and other baseline conditions, porosity, permeability, capillary pressure and relative permeability. Special emphasis is given to petrophysical properties of the reservoir and the seal, such as comparing the estimates determined by different methods, looking at their geostatistical distributions as well as changes in them when exposed to CO2

    A (not so) shallow controlled CO2 release experiment in a fault zone

    Get PDF
    The CSIRO In-Situ Laboratory Project (ISL) is located in Western Australia and has two main objectives related to monitoring leaks from a CO2 storage complex by controlled-release experiments: 1) improving the monitorability of gaseous CO2 accumulations at intermediate depth, and 2) assessing the impact of faults on CO2 migration. A first test at the In-situ Lab has evaluated the ability to monitor and detect unwanted leakage of CO2 from a storage complex in a major fault zone. The ISL consists of three instrumented wells up to 400 m deep: 1) Harvey-2 used primarily for gaseous CO2 injection, 2) ISL OB-1, a fibreglass geophysical monitoring well with behind-casing instrumentation, and 3) a shallow (27 m) groundwater well for fluid sampling. A controlled-release test injected 38 tonnes of CO2 between 336-342 m depth in February 2019, and the gas was monitored by a wide range of downhole and surface monitoring technologies. CO2 reached the ISL OB-1 monitoring well (7 m away) after approximately 1.5 days and an injection volume of 5 tonnes. Evidence of arrival was determined by distributed temperature sensing and the CO2 plume was detected also by borehole seismic after injection of as little as 7 tonnes. Observations suggest that the fault zone did not alter the CO2 migration along bedding at the scale and depth of the experiment. No vertical CO2 migration was detected beyond the perforated injection interval; no notable changes were observed in groundwater quality or soil gas chemistry during and post injection. The early detection of significantly less than 38 tonnes of CO2 injected into the shallow subsurface demonstrates rapid and sensitive monitorability of potential leaks in the overburden of a commercial-scale storage project, prior to reaching shallow groundwater, soil zones or the atmosphere. The ISL is a unique and enduring research facility at which monitoring technologies will be further developed and tested for increasing public and regulator confidence in the ability to detect potential CO2 leakage at shallow to intermediate depth

    Lessons learned : the first in-situ laboratory fault injection test

    Get PDF
    The CSIRO In-Situ Laboratory has been a world first injection of CO2 into a large faulted zone at depth. A total of 38 tonnes of CO2 was injected into the F10 fault zone at approximately 330 m depth and the process monitored in detail. The site uses a well, Harvey-2, in SW Western Australia (the South West Hub CCS Project area). The top 400 m section of Harvey-2 was available for injection and instrumentation. An observation well, ISL OB-1 (400 m depth) was drilled 7 m to the north east of Harvey-2. ISL OB-1 well was cased with fibreglass to provide greater monitoring options. The CSIRO In-Situ Laboratory was designed to integrate existing facilities and infrastructure from the South West Hub CCS Project managed by the West Australian Department of Mines, Industry Regulation and Safety. While new equipment was deployed for this specific project, the site facilities were complemented by a range of mobile deployable equipment from the National Geosequestration Laboratory (NGL). The geology of the area investigated poses interesting challenges: a large fault (F10) is estimated to have up to 1000 m throw overall, the presence of packages of paleosols rather than a contiguous mudstone seal, and a 1500 m vertical thickness of Triassic sandstone as the potential commercial storage interval. This unique site provides abundant opportunities for testing more challenging geological environments for carbon storage than at other sites. While details of this first project are described elsewhere, lessons were learned during the development and execution of the project. A rigorous risk register was developed to manage project risk, but not all events encountered were foreseen. This paper describes some of the challenges encountered and the team's response. Relocation of the project site due to changes in landholder ownership) and other sensitivities resulted in the need for rapid replanning of activities at short notice resulting in the development of the site at Harvey-2. The relocation allowed other research questions to be addressed through new activities, such as the ability to consider a shallow/controlled release experiment in an extensive fault zone, but this replanning did cause some timing stress. The first test at the In-Situ Laboratory was reconfigured to address some of those knowledge gaps that shallow/controlled release experiments had yet to address. Novel approaches to drilling and completing the monitoring well also threw up unanticipated difficulties. Loss of containment from the wellbore also posed significant challenges, and the team's response to this unintended release of gas and water from the monitoring well at the conclusion of the field experiment will be discussed. Other challenges that we encountered, their impacts, and our response are also catalogued here (Table 1 and below) to enable broad knowledge exchange
    • …
    corecore