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  28 

Abstract 29 

Residual CO2 trapping is a key mechanism of secure CO2 storage, an essential 30 

component of the Carbon Capture and Storage technology. Estimating the amount of CO2 that 31 

will be residually trapped in a saline aquifer formation remains a significant challenge. Here, 32 

we present the first oxygen isotope ratio (δ18O) measurements from a single-well experiment, 33 

the CO2CRC Otway 2B Extension, used to estimate levels of residual trapping of CO2. 34 

Following the initiation of the drive to residual saturation in the reservoir, reservoir water δ18O 35 

decreased, as predicted from the baseline isotope ratios of water and CO2, over a time span 36 

of only a few days. The isotope shift in the near-wellbore reservoir water is the result of isotope 37 

equilibrium exchange between residual CO2 and water. For the region further away from the 38 

well, the isotopic shift in the reservoir water can also be explained by isotopic exchange with 39 

mobile CO2 from ahead of the region driven to residual, or continuous isotopic exchange 40 

between water and residual CO2 during its back-production, complicating the interpretation of 41 

the change in reservoir water δ18O in terms of residual saturation.  A small isotopic distinction 42 

of the baseline water and CO2 δ18O, together with issues encountered during the field 43 

experiment procedure, further prevents the estimation of residual CO2 saturation levels from 44 

oxygen isotope changes without significant uncertainty. The similarity of oxygen isotope-45 

based near-wellbore saturation levels and independent estimates based on pulsed neutron 46 

logging indicates the potential of using oxygen isotope as an effective inherent tracer for 47 

determining residual saturation on a field scale within a few days. 48 

 49 

Keywords: residual saturation, oxygen isotopes, Otway, geochemical tracer, CO2 storage 50 

 51 

 52 
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1. Introduction 53 

Geological storage of CO2 in rock formations, as part of Carbon Capture and Storage 54 

(CCS), is a promising means of directly lowering CO2 emissions from fossil fuel combustion 55 

(Metz et al., 2005). CO2 can be stored in the subsurface in three different ways over short 56 

timescales: (1) structural trapping, where gaseous or liquid CO2 is trapped beneath an 57 

impermeable cap rock, (2) residual trapping, the immobilisation of CO2 through trapping within 58 

individual and dead end spaces between rock grains, and (3) solubility trapping, where CO2 is 59 

dissolved into the reservoir water that fills the pores between rock grains. Mineral trapping of 60 

CO2 as a result of chemical reactions of the injected CO2 with the host rock, forming new 61 

carbonate minerals within the pores, is a longer term storage mechanism, likely to play a role 62 

in siliciclastic formations several hundreds of years after initiation of CO2 injection (e.g., 63 

Audigane et al., 2007; Sterpenich et al., 2009; Xu et al., 2003, 2004; Zhang et al., 2009). 64 

For accurately modelling the long term fate of CO2 in a commercial-scale CCS project, 65 

it is of value to develop an efficient plan to quantitatively assess the amount of structural, 66 

residual and solubility trapping at the reservoir scale through a short-term test undertaken in 67 

the vicinity of an injection well prior to large-scale injection. Such a test would reduce risk and 68 

uncertainty in estimating the storage capacity of a formation and would provide a commercial 69 

operator with greater reassurance of the viability of their proposed storage site. This is 70 

particularly true for residual trapping of CO2 which can play a major role for CO2 plume 71 

migration, immobilisation, storage security and reservoir management (Doughty and Pruess, 72 

2004; Ennis-King and Paterson, 2002; Juanes et al., 2006; Krevor et al., 2015; Qi et al., 2009). 73 

Despite the important role of residual trapping of CO2 in commercial-scale CCS projects, there 74 

is a current lack of cost-effective and reliable methodologies to estimate the degree of residual 75 

trapping on the reservoir scale (Mayer et al., 2015).  76 

Stable isotopes may be highly suitable for assessing the movement and fate of injected 77 

CO2 in the formation since they fingerprint the injected CO2 rather than being a co-injected 78 
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compound like perfluorocarbon tracers, Kr or Xe (Mayer et al., 2013). There are few sources 79 

of available oxygen other than the reservoir water within CO2 storage reservoirs (Johnson et 80 

al., 2011; Mayer et al., 2015). Any other reservoir oxygen that is available for water-rock 81 

reactions is typically in isotopic equilibrium with the reservoir fluid due to relatively fast reaction 82 

kinetics in the water-carbonate system (e.g., Mills and Urey, 1940; Vogel et al., 1970). During 83 

CO2 injection, a new major source of oxygen is added to the system in the form of supercritical 84 

CO2. Isotopic equilibrium exchange proceeds rapidly between oxygen in CO2 and oxygen in 85 

water of various salinities (Kharaka et al., 2006; Lécuyer et al., 2009). In most natural 86 

environments the amount of oxygen in CO2 is negligible compared to the amount of oxygen in 87 

water. Consequently, the oxygen isotope ratio (δ18O) of water remains essentially constant 88 

and δ18O of CO2 approaches that of the water plus the appropriate isotopic enrichment factor 89 

between water and CO2 (ε ≈ 103 lnαCO2-H2O), depending on the reservoir temperature 90 

(Bottinga, 1968). At CO2 injection sites, due to the large quantities of CO2 injected, CO2 91 

becomes a major oxygen source, and both CO2 and water will change their δ18O due to 92 

isotopic equilibrium exchange reactions if the injected CO2 is isotopically distinct with respect 93 

to the baseline reservoir water (Barth et al., 2015; Johnson and Mayer, 2011; Johnson et al., 94 

2011; Kharaka et al., 2006; Mayer et al., 2015). This has also been observed in natural settings 95 

characterised by vast amounts of free-phase CO2 in contact with water produced from CO2-96 

rich springs, for example in south east Spain (Céron and Pulido-Bosch, 1999; Céron et al., 97 

1998) or in Bongwana, South Africa (Harris et al., 1997). The change in reservoir water δ18O 98 

due to isotopic exchange with CO2 under conditions typical for CO2 injection sites can be 99 

related to the fraction of oxygen in the system sourced from CO2 (Barth et al., 2015; Johnson 100 

and Mayer, 2011; Johnson et al., 2011; Kharaka et al., 2006), and the fraction of oxygen 101 

sourced from CO2 can be successfully used to assess volumetric saturation of free-phase and 102 

dissolved CO2 in the reservoir (Johnson et al., 2011; Li and Pang, 2015). 103 

CO2CRC Limited (CO2CRC) developed and has operated the CO2CRC Otway Facility 104 

in the Otway Basin near Nirranda South, Victoria, Australia, since 2004 (Sharma et al., 2007). 105 
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The facility allows for trial injection in multiple storage types, including a saline formation that 106 

currently uses a single-well configuration. This configuration is ideal for the development of an 107 

effective reservoir characterisation test prior to commercial-scale CO2 injection (Paterson et 108 

al., 2011). In 2011, the first single-well injection test (using the CRC-2 injection well) was 109 

undertaken at the Otway facility using 150 t of injected CO2 to quantify reservoir-scale residual 110 

trapping of CO2 in a saline formation in the absence of an apparent structural closure 111 

(CO2CRC Otway Stage 2B – henceforth referred to as Otway 2B; Paterson et al., 2011, 2013, 112 

2014). The target reservoir for the experiment was within the Paaratte Formation, a saline 113 

formation at 1075-1472 m TVDSS (true vertical depth below mean sea level), with the target 114 

interval for the Otway 2B experiment at 1392-1399 m TVDSS. Deep saline formations are the 115 

most likely candidates for geological CO2 storage because of their huge potential capacity and 116 

their locations close to major CO2 sources (Holloway, 2001). The Paaratte Formation, while 117 

only used for research purposes, is a saline formation analogous to those proposed for 118 

commercial-scale CO2 injection and storage. Two of the original measurements of residual 119 

CO2 saturation were acquired using noble gas (Xe and Kr) tracer injection and recovery data 120 

(LaForce et al., 2014), and pulsed neutron logging of the CRC-2 injection well (Schlumberger 121 

Residual Saturation Tool; Dance and Paterson, 2016; Paterson et al., 2013, 2014). The 122 

second part of the recent COCRC Otway Stage 2B Extension project (henceforth referred to 123 

as Otway 2B Extension) was a smaller-scale repeat of these two residual saturation tests 124 

using improved methodologies. 125 

Here we present oxygen (δ18O) and hydrogen isotope (δ2H) data from produced water 126 

and formation water (U-tube) samples, and oxygen isotope data from CO2 samples from the 127 

Otway 2B Extension. For the first time we estimate levels of residual trapping of CO2 based 128 

on oxygen isotope data from a single-well test. We compare our results with measures from 129 

independent techniques to estimate residual saturation. 130 

 131 
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 132 

2. CO2CRC Otway Stage 2B Extension Project 133 

The Otway 2B Extension was conducted in October-December 2014 over a time span 134 

of 80 days. The target formation for the Otway 2B experiments, the Paaratte Formation, is a 135 

complex interbedded formation of medium to high permeability sandstones and thin 136 

carbonaceous mud-rich lithologies, deposited in multiple progradations of delta lobes during 137 

the Campanian (Bunch et al., 2012; Dance et al., 2012; Paterson et al., 2013). The target 138 

interval for the Otway 2B experiments at 1392-1399 m TVDSS is characterised by well-sorted 139 

texturally submature deltaic sandstone dominated by quartz and low clay and feldspar 140 

contents, overlain by a diagenetic carbonate seal (Kirste et al., 2014; Paterson et al., 2013, 141 

2014). The sandstone is characterised by a porosity of ~28%, an average permeability of 2.2 142 

Darcy and a fluid salinity of 800 mg/L (Bunch et al., 2012; Dance et al., 2012). The target 143 

reservoir is overlain by a cemented interval and a thick non-reservoir lithofacies interval with 144 

a high sealing capacity (Paterson et al., 2013, 2014). The CRC-2 well is equipped with a U-145 

tube geochemical sampling system (Freifeld et al., 2005) and a set of four pressure and 146 

temperature gauges at the top and bottom of the target interval for the Otway 2B experiments. 147 

The aims of the Otway 2B Extension were to study differences in reservoir water quality 148 

in response to the injection of CO2-saturated water with and without trace amounts of gas 149 

impurities (Phase 1), and to characterise the residual trapping levels of CO2 after injection of 150 

pure CO2 into the formation (Phase 2). Our study primarily focuses on Phase 2. However, to 151 

study baseline conditions in the reservoir during the entire project, samples were taken during 152 

the initial production of 535.8 t of water from the target interval prior to Phase 1 and during the 153 

water injection for Phases 1.1 (days 11-12) and 1.2 (days 35-36), the two push-pull tests 154 

characterising Phase 1. Further, samples of produced water from Phases 1.1 (day 35) and 155 

1.2 (days 62-63) were taken. Operational details of Phase 1 are presented in a separate study 156 

(Haese et al., in prep.). 157 
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Phase 2 started with the production of 75.1 t of water on days 63-64 (Table 1). On day 158 

65, 67 t of previously produced water was injected for the ‘water test’, together with Kr, Xe and 159 

methanol dissolved into the water during the injection (Phase 2.1). Water production with U-160 

tube and production water sampling to study the tracer behaviour at reservoir conditions 161 

without CO2 in the formation commenced immediately after the injection, producing 122.2 t of 162 

water on days 65-67. A pulsed neutron log was run on day 68 to provide a baseline for the 163 

near-wellbore conditions prior to the drive to residual saturation. This was followed by the 164 

injection of 109.8 t of pure CO2 on days 68-72 (Phase 2.2). Immediately following the CO2 165 

injection, another pulsed neutron log was run to measure the CO2 response to test if the near-166 

well saturation was consistent with the predictions. On days 72-74, 323.7 t of previously 167 

extracted water, saturated with 17.5 t of CO2, was injected to drive the reservoir to residual 168 

saturation (Phase 2.3). The injected water that drives the reservoir to residual saturation was 169 

fully saturated with CO2 to avoid dissolving the residually trapped CO2. The near-well 170 

saturation was tested using a final pulsed neutron log. On day 75, 67.2 t of previously produced 171 

water, now saturated with 3.9 t of CO2 and containing trace amounts of Kr, Xe and methanol, 172 

was injected, followed by production of 128.5 t of water with U-tube and water sampling over 173 

three days. This allowed measurement of the tracer partitioning between water and residually 174 

trapped CO2 in the reservoir during the ‘residual saturation test’ (Phase 2.4). Finally, the 175 

excess water remaining in the surface tanks was re-injected for disposal on days 78-80. 176 

Downhole temperatures and pressures were recorded through the entire duration of the 177 

project. The injected gas for the Otway 2B Extension was a mix of industrial CO2 captured at 178 

the Callide Oxyfuel pilot capture plant in Queensland (Callide CO2) and food grade CO2 (99.9 179 

%) from the Boggy Creek well in the vicinity of the Otway site (BOC CO2). 180 

 181 

 182 

3. Materials and Methods 183 
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3.1 Materials 184 

Water and gas samples were collected using the U-tube system (Freifeld et al., 2005). 185 

This system provides the advantage of collecting reservoir water at in situ reservoir pressure 186 

of ~140 bar, so that the dissolved gas does not exsolve during the ascent of the sample fluid 187 

from the reservoir. At Otway, pressurised water samples were collected in 150 mL stainless 188 

steel Swagelok cylinders with needle valves on each end. The cylinder was connected to 189 

either a 1 L, 5 L or 10 L RestekTM multi-layer gas bag with a polypropylene combo valve, 190 

depending on the amount of gas expected. The cylinder was depressurised under controlled 191 

conditions for approximately one hour to collect all of the produced CO2 and other gases in 192 

the gas bag. Wet chemical analyses including pH, alkalinity, electrical conductivity and salinity 193 

were conducted on the produced water samples in the purpose-built field laboratory. After 194 

processing the water samples in the field laboratory, the depressurised fluids were filtered to 195 

0.45 µm and ~8 mL of the filtered fluid transferred into a 10 mL pre-evacuated BD© plastic 196 

vacutainer through the self-sealing lid of the vacutainer using a hypodermic needle for 197 

subsequent isotope analysis. 198 

Injection waters were sampled downstream of the oxygen scavenger (see Paterson et 199 

al., 2011, for a detailed description and illustration of the CRC-2 process flow setup). 200 

Production waters in addition to U-tube samples were sampled directly from the production 201 

water line after the degassing tank. The injection and production water samples were filtered 202 

to 0.45 µm and transferred to 60 mL Nalgene bottles with tight fitting caps, with zero 203 

headspace on filling to prevent evaporation. 204 

A sample of the pure CO2 gas from the nearby Boggy Creek production well (BOC CO2) 205 

was collected for stable isotope analyses in a 1 L gas bag directly from the BOC tanker. 206 

Duplicate samples of the Callide industrial CO2 were collected for isotopic analyses by 207 

depressurising a 150 mL stainless steel Swagelok cylinder containing liquid CO2 filled directly 208 

from the Callide tanker. 209 
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 210 

3.2 Methods 211 

Water and CO2 samples were analysed at the Stable Isotope Geochemistry Laboratory 212 

at the School of Earth Sciences of the University of Queensland, Australia. Water samples 213 

were analysed for oxygen isotopes after standard CO2 equilibration (Epstein and Mayeda, 214 

1953) and for hydrogen isotopes after online equilibration at 40 °C with Hokko coils, using an 215 

Isoprime Dual Inlet Isotope Ratio Mass Spectrometer (DI-IRMS) coupled to a Multiprep Bench 216 

for online analysis. Delta values in water samples are reported in ‰ deviation relative to 217 

VSMOW (Vienna Standard Mean Ocean Water) for both oxygen and hydrogen isotopes 218 

according to  219 

 δsample=	
Rsample

Rstandard
-1  x 1000        (1) 220 

where R represents the 18O/16O and 2H/1H ratios of samples and standards, respectively. 221 

Analytical uncertainties for water δ2H and δ18O are ±2 ‰ (1σ – one standard deviation) and 222 

±0.1 ‰ (1σ), respectively. All laboratory standards were calibrated against IAEA (VSMOW, 223 

SLAP, GISP) and USGS (USGS45, USGS46) international water standards.  224 

CO2 samples were analysed using an Isoprime/Agilent Gas Chromatograph-225 

combustion-Isotope Ratio Mass Spectrometer (GC-c-IRMS). All samples were analysed using 226 

a 20:1 split. The gas chromatograph (GC) (with a 50 m × 320 μm × 5 μm CP-PoraBOND Q 227 

column) was set to a flow of 1.2 mL/min with an oven temperature of 40 °C. The δ18O values 228 

of the CO2 gas (reported in ‰; δ O18
CO2

) were normalised to the VSMOW scale following a 2-229 

point normalisation (Paul et al., 2007). NBS18 and NBS19 international reference standards 230 

were analysed to confirm calibration of the δ18O scale. The analytical uncertainty for δ18O in 231 

gas samples is ±0.2 ‰ (1σ). 232 

 233 
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 234 

4. Results 235 

4.1 Hydrogen isotopes in water samples 236 

Values of δ2H in water samples remain relatively constant throughout the entire Otway 237 

2B Extension (Fig. 1). All samples bar one of the duplicate samples from the initial water 238 

production prior to Phase 1.1 and the first water sample from the CO2-saturated water injection 239 

of Phase 1.1 fall within the 1σ range (±1.78 ‰) of the average of all samples from the entire 240 

Otway 2B Extension (-30.19 ‰; excluding the duplicate sample with much higher values from 241 

the initial water production). Four water samples were collected from the injection water during 242 

Phase 1.1, and the average of the four (-33.58 ± 1.00 ‰) is marginally outside of the 1σ range 243 

of the average from all samples. Values of reservoir water δ2H throughout the Otway 2B 244 

Extension are similar to baseline reservoir water values during the previous Otway 2B 245 

experiment in 2011 (~-25 to -33 ‰; Kirste et al., 2014). The water δ2H of samples collected 246 

directly from the production line into bottles and samples from the U-tube during both the water 247 

and residual saturation tests show an excellent correlation within their analytical uncertainties.  248 

 249 

4.2 Oxygen isotopes in water samples 250 

For reservoir water δ18O, almost all samples prior to the three days of water production 251 

for Phase 2.4 fall in the 1σ range (0.19 ‰) of the average of these bottle and U-tube samples 252 

(-6.01 ‰) (Fig. 2). This baseline value is similar to the values for the first Otway 2B experiment 253 

in 2011 of around -5 to -6 ‰ (Kirste et al., 2014). Only the two samples of injection water for 254 

Phase 1.2 (δ18O of ~-5.6 to -5.7 ‰) as well as two samples from the water production prior to 255 

Phase 2.1 (δ18O of ~-6.4 ‰) fall outside of the 1σ range. During the three days of water 256 

production for Phase 2.4 (days 75-77), when water samples in contact with CO2 in the 257 

reservoir were collected, a decrease was observed in δ18O ratios of reservoir water in both the 258 
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bottle and U-tube samples to the lowest values recorded throughout the experiment of -6.63 259 

± 0.10 ‰ and -6.46 ± 0.10 ‰, respectively. This indicates a shift away from stable baseline 260 

conditions without CO2 prior to Phase 2.4 (Fig. 2 and 3). In particular, the δ18O values of both 261 

the bottle and U-tube samples from the last day of water production are clearly lower 262 

compared to the baseline conditions, while δ2H values remain constant throughout the entire 263 

project (Fig. 3).  264 

In contrast to δ2H, there is an offset between δ18O values in water samples from bottles 265 

and the U-tube for the water and residual saturation tests (Fig. 2). Bottle samples have 266 

consistently lower δ18O values compared to the U-tube samples, although the offset is not 267 

constant from sample to sample. 268 

 269 

 270 

5. Discussion 271 

5.1 Baseline Stable Isotope Conditions and Small-Scale Baseline Changes Prior to 272 

CO2 Injection 273 

Concurrently increasing or decreasing final water δ18O (δ O18
H2O

f
) and δ2H values of 274 

reservoir water compared to baseline values can indicate admixture of different waters with 275 

variable isotopic compositions, while a change in δ O18
H2O

f
 without any change in δ2H suggests 276 

water-CO2 interaction in the reservoir when mineral dissolution can be excluded (e.g., 277 

D’Amore and Panichi, 1985; Johnson and Mayer, 2011; Johnson et al., 2011). Both δ18O and 278 

δ2H of reservoir water prior to CO2 injection remained relatively stable during these “baseline” 279 

conditions, with δ2H of reservoir water showing no change from the stable baseline conditions 280 

during the entire Otway 2B Extension (Fig. 1 and 2). This provides strong evidence for no 281 

major evaporation or water mixing processes at surface or in the reservoir. Further, both δ18O 282 
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and δ2H show similar baseline conditions compared to the 2011 Otway 2B experiment, 283 

indicating that any free-phase CO2 potentially remaining in the reservoir near the well at the 284 

end of the previous Otway 2B experiment dissolved and only negligibly changed the δ18O 285 

signature of the reservoir water between the end of the first and initiation of the second Otway 286 

2B experiment.  287 

This is also supported by numerical simulations that have been run to investigate the 288 

distribution of fluids in the reservoir at the start of the Otway Stage 2B Extension. Detailed 289 

geological data were used to construct a near-well radial grid for the reservoir unit, and the 290 

complete sequence of production and injection of fluids from 2011 onwards, including tracers, 291 

was simulated using the TOUGH2 simulator with the EOS7G equation of state module, which 292 

can model methane, CO2 and tracers. The simulations were matched against the relevant field 293 

data for pressure, temperature and produced concentrations in the 2011 Otway Stage 2B 294 

experiment, so this gives some confidence that the model accurately represents the reservoir 295 

behaviour during the 2011 test and beyond. The details of these simulations will be reported 296 

elsewhere. By running the model forward from the end of 2011 data, the prediction was that 297 

at the beginning of the 2014 experiment, the free-phase CO2 had been dissolved from the 298 

immediate vicinity of the well. Any remaining free-phase CO2 was predicted to be confined to 299 

a thin layer at the top of the reservoir unit, and away from the well. 300 

We collected two U-tube samples in duplicate from the initial water production prior to 301 

Phase 1.1, and one of these duplicate samples shows higher δ2H values compared to the 302 

other U-tube sample collected just prior (Fig. 1). The oxygen isotope composition of the 303 

duplicates of both initial water production samples is very similar and within the range of all 304 

water samples collected prior to CO2 injection during Phase 2 (Fig. 2). Since these two 305 

samples from the initial water production were stored over six months in a refrigerator in a 306 

Falcon tube with around 20 % cap space prior to analysis, and since both samples were 307 

collected consecutively and one of the samples shows δ2H values in accordance with the other 308 

collected samples during the project (Fig. 1), the higher δ2H values of one of the initial water 309 
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production samples can potentially be explained by storage contamination influencing only 310 

hydrogen isotopes.  311 

Only four samples fall outside of the 1σ range of the average of all samples prior to the 312 

production phase of the residual saturation test for δ18O: the two samples of injection water 313 

for Phase 1.2 and two samples from the water production prior to the water test. The injection 314 

water for Phase 1.2, derived from a different surface storage tank as the water injected during 315 

Phase 1.1, shows both slightly higher δ18O and δ2H compared to the water injected into the 316 

formation around one month earlier during Phase 1.1 (Fig. 1 and 2), potentially indicating 317 

minor evaporation processes and/or oxygenation of water in the surface storage tanks (Haese 318 

et al., in prep.). At the end of the water production prior to Phase 2.1, more water (212.3 t) 319 

was produced than injected during Phases 1.1 and 1.2 (202.2 t). Therefore, it is possible that 320 

the last few tons of the water produced was either older reservoir water from prior to the Otway 321 

2B Extension or a mixture of this considerably older reservoir water with injected water from 322 

Phase 1. This could explain the lower δ18O of the waters produced on the day before Phase 323 

2.1.  324 

The stability of reservoir water δ18O prior to Phase 2.4 provides evidence that, with the 325 

exceptions noted above, δ18O remained stable during baseline conditions when reservoir 326 

water was not in contact with free-phase CO2. During the three days of water production of 327 

Phase 2.4, a decrease in δ18O of water in contact with free-phase CO2 in the reservoir 328 

occurred, indicating a clear shift from the stable baseline conditions (Fig. 2 and 3). This change 329 

in water δ18O can be used in the following to estimate the fraction of CO2 that is residually 330 

trapped in the reservoir. 331 

 332 

5.2 Estimation of Residual CO2 Saturation Based on Oxygen Isotope Values of 333 

Reservoir Water 334 
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The method used here to estimate residual CO2 saturation based on changes in δ18O of 335 

reservoir water in contact with free-phase CO2 is described in detail in Johnson et al. (2011). 336 

If the majority of oxygen in the system is sourced from CO2, as is the case near the injection 337 

well after Phase 2.3, δ O18
CO2

 will dominate the water-CO2 system. The δ18O ratio of reservoir 338 

water will start to change from the baseline water oxygen isotope value, δ O18
H2O

b
, towards an 339 

end-member scenario where the water has a final water value δ O18
H2O

f
 lower than that of the 340 

injected CO2 by the isotopic enrichment factor (Johnson et al., 2011). In this case, the fraction 341 

of oxygen in the system sourced from CO2, XCO2

o , can be estimated using   342 

XCO2

o  = 
δ OH2O	

b18
- δ OH2O

f18

δ OH2O
b18

	+ ε	- δ OCO2
18

        (2) 343 

The isotopic enrichment factor ε between CO2 and water is reported in ‰ and 344 

determined using the equation defined by Bottinga (1968) 345 

ε = -0.0206 × 
106

T2  + 17.9942 × 
103

T
 – 19.97      (3) 346 

where T is the reservoir temperature in Kelvin. This equation is valid at atmospheric 347 

conditions as well as elevated temperatures and pressures relevant for CCS projects (Becker 348 

et al., 2015; Bottinga, 1968; Johnson et al., 2011).  349 

The water-CO2 system for oxygen in a reservoir can be described quantitatively in terms 350 

of the averaged reservoir CO2 saturation for the region contacted by CO2 and measured with 351 

the water sample (SCO2
) using 352 

SCO2
 = 

BXCO2
o + CXCO2

o  - B

A - B - AXCO2
o + BXCO2

o + CXCO2
o        (4) 353 

with A referring to moles of oxygen in 1 L of free-phase CO2 at reservoir conditions, B to 354 

moles of oxygen dissolved in 1 L water from CO2 at reservoir conditions, and C to moles of 355 



15 
 

oxygen in 1 L water at reservoir conditions (Johnson et al., 2011). During Phase 2.3, the 356 

injection of CO2 and water generally matched the target ratio during most of the water injection 357 

for the drive to residual. However, late during the injection, there were periods of delivery of 358 

added CO2 below the target, potentially resulting in some dissolution of residually trapped CO2 359 

near the wellbore. Thus, in this experiment estimates of SCO2
 based on oxygen isotopes 360 

provide flow-weighted averages of CO2 saturation, and we expect that SCO2
 levels in the 361 

reservoir are variable over distance from the borehole, with lower saturation estimates near 362 

the wellbore. 363 

Eq. (4) was first applied during the enhanced oil recovery (EOR) Pembina Cardium CO2 364 

monitoring project in Alberta, Canada, to estimate SCO2
 (Johnson et al., 2011), and the 365 

robustness of this approach has been validated using laboratory (Barth et al., 2015; Johnson 366 

and Mayer, 2011) and theoretical studies (Li and Pang, 2015). It has been further shown by 367 

Johnson et al. (2011) that the method outlined above provides SCO2
 estimates from the Frio 368 

experiment in east Texas (USA) similar to estimates from an approach that did not assume 369 

established isotopic equilibrium between water and CO2 and that uses volumetric ratios of 370 

water and CO2 determined from known changes in water and CO2 δ18O (Kharaka et al., 2006). 371 

The method can only be applied if isotopic exchange with minerals in the reservoir can be 372 

excluded. Injected CO2 may form carbonic acid and liberate oxygen from the minerals in the 373 

reservoir, e.g. through calcite dissolution (Gunter et al., 1993). Based on detailed analyses of 374 

all major and minor cations and anions indicating fluid-mineral reactions, including Si, Al, Ca, 375 

Mg, K and HCO3-, in reservoir water samples collected during Phase 1 (Haese et al., in prep.), 376 

silicate mineral dissolution can be ruled out. Very minor carbonate mineral (calcite and 377 

siderite) dissolution was observed. However, the amount of oxygen liberated from carbonate 378 

will be very small compared to the total oxygen from CO2 and water. Sterpenich et al. (2009) 379 

demonstrated that less than 1% by mass of an oolitic limestone dissolved due to interaction 380 

with CO2-saturated water under experimental conditions (150 bar, 80 °C) at water-rock ratios 381 

40 times higher than those typical for reservoirs considered for CO2 injection. Further, since 382 
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the target interval of the reservoir is characterised by deltaic sandstones dominated by quartz 383 

and low clay and feldspar contents (Kirste et al., 2014; Paterson et al., 2013, 2014), any 384 

contribution of oxygen from dissolution of carbonate minerals to the total oxygen inventory in 385 

the target interval is negligible. Therefore, we conclude that we can eliminate isotopic 386 

exchange with minerals as a contribution to oxygen isotope changes in the reservoir water 387 

during the Otway 2B Extension. 388 

As mentioned above, we observe an offset between δ18O values in water samples 389 

collected directly from the production line and U-tube samples during the water and residual 390 

saturation tests, with lower δ18O values in bottle compared to U-tube samples, while no change 391 

can be observed in δ2H (Fig. 1 and 2). The isotopic equilibrium between water and injected 392 

CO2 is established before CO2 exsolves (Johnson et al., 2011). Consequently, the U-tube fluid, 393 

which is the formation fluid depressurised at atmospheric pressure and therefore not in contact 394 

with the atmosphere or reservoir gas over longer time scales, provides our best estimate of 395 

δ O18
H2O

f
 in the reservoir at the time of sampling. Consequently, we use the U-tube sample 396 

values to estimate CO2 saturation in the following. 397 

 398 

5.3 Uncertainties in Water and CO2 Source Mixing 399 

5.3.1 Water Baselines and Production 400 

For the approach to estimate residual CO2 saturation outlined above to be robust, it is 401 

essential to have a reliable baseline δ18O for reservoir water. A total of 390.9 t of CO2-saturated 402 

water was injected during Phases 2.3 (323.7 t) and 2.4 (67.2 t) prior to producing 128.5 t of 403 

water in Phase 2.4 (days 75-77). Consequently, we expect that the water produced in Phase 404 

2.4 was a mixture of the injection water of Phases 2.3 and 2.4. The 323.7 t of CO2-saturated 405 

water injected during Phase 2.3 (days 72-74) had an average water δ18O of -6.07 ± 0.07 ‰ 406 

and δ O18
CO2

 of +27.65 ± 0.12 ‰ for the co-injected CO2, resulting in a δ18O value for the fully 407 
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CO2-saturated water of -6.18 ± 0.07 ‰ at wellbore conditions. On day 75, 67.2 t of CO2-408 

saturated water containing noble gas tracers were injected for Phase 2.4, with an average 409 

water δ18O of -5.79 ± 0.07 ‰ and δ O18
CO2

 of +29.30 ± 0.20 ‰ for the co-injected CO2, resulting 410 

in a δ18O value for the fully CO2-saturated water of -5.86 ± 0.07 ‰ at wellbore conditions.  411 

 The Phase 2.3 (first) injection of CO2-saturated water thus has a slightly different 412 

oxygen isotope signature compared to the injection water for Phase 2.4, resulting in the 413 

necessity to account for mixing of these two water masses in the reservoir to provide a reliable 414 

baseline value for the estimation of residual saturation on each of the three days of water 415 

production. We used the data on co-injected methanol to estimate the mixing ratio of the two 416 

water masses during the water production stage. Methanol is a non-reactive tracer that can 417 

be applied to study mixing of water masses in a reservoir (e.g., Haese et al., 2013; Tomich et 418 

al., 1973). The methanol concentration of the injected water in Phase 2.4 was 330 ± 20 ppm 419 

based on duplicate samples from the injection line, and three U-tube samples collected during 420 

injection. Methanol was measured in nearly all U-tube samples collected during the water 421 

production stage of Phase 2.4. The injected water for Phase 2.3 was sourced from two 422 

different water storage tanks, with the last 111 t of the water sourced from the same tank used 423 

for the water injection and production during Phase 2.1 (Tank 3), and therefore containing 424 

methanol. The other 212 t of the injection were sourced from another tank (Tank 2) containing 425 

low levels of methanol (around 25 ppm by mass). Mass balance calculations suggest that the 426 

methanol concentration in Tank 3 should have been around 130 ppm at the start of Phase 2.3. 427 

Two U-tube samples taken after the Phase 2.3 injection gave an average methanol 428 

concentration in the reservoir of 87.5 ppm, suggesting that the injection concentration may 429 

have been slightly less than the mass balance calculation would suggest. 430 

Fig. 4 shows the U-tube data for the concentration of methanol in the back-produced 431 

water in Phase 2.4, with the horizontal axis normalised as the produced volume relative to the 432 

injected volume (67.2 t). If there was no mixing between the two masses of injected water, 433 
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then one would expect this to be a step function, but there is obviously a degree of mixing, 434 

and this is determined by the hydrodynamic dispersion of the reservoir unit around the well. 435 

A simple theoretical result can be obtained for the effect of longitudinal dispersion on the 436 

injection of a uniform tracer into a homogeneous reservoir with no initial tracer (Gelhar and 437 

Collins, 1971; Güven et al., 1985), and trivially modified for the case of a uniform background 438 

concentration of tracer already in the reservoir. Let C be the concentration of the tracer in the 439 

produced fluid, C0 the injected tracer concentration, and Cb the uniform concentration of tracer 440 

already in the reservoir. Let x be the ratio of the cumulative volume of produced fluid at any 441 

time to the volume of the original injected fluid. The ratio of radial dispersivity α to the radial 442 

penetration depth of the tracer, R, is b. If the reservoir is perfectly stratified, and only 443 

longitudinal dispersion is considered, then  444 

C= C0-Cb
1

2
 Erfc

(x-1)

(
16 b

3
 2-|1-x|

1
2 1-x )

1/2 +  Cb                  (5) 445 

In our case, it is only the last 111 t of water injected in Phase 2.3 that contain the tracer 446 

concentration Cb. After the injection of 67.2 t in Phase 2.4, the last part of the back-production 447 

of 128.5 t will probably not be producing water beyond that 111 t, so we can consider the 448 

tracer concentration in the reservoir to be uniform. If the theoretical result is fit to the methanol 449 

data by varying C0, Cb and b then the curve in Fig. 4 is obtained. The fitted value of C0 is 331 450 

ppm (with a standard error of 7.2 ppm), which agrees well with the measured concentration of 451 

injected methanol. The fitted value of Cb is 98.6 ppm (with a standard error of 8.7 ppm), which 452 

is close to the measured concentration in the reservoir before the Phase 2.4 injection. The 453 

parameter b has a fitted value of 0.0177 (with a standard error of 0.0055). Numerical 454 

simulations indicate that the average radial penetration depth R of the tracer is about 3.5-3.8 455 

m, so the fitted radial dispersivity α is 0.062 to 0.067 m. 456 
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The quality of the fit is worst during the early back-production, and this matches with 457 

observations made in other similar continuous injection tracer tests (Güven et al., 1985). 458 

Hydrodynamic dispersion acts to smooth out tracer concentrations, and since the tracer that 459 

was first produced was that last injected (and which has been subject to the least dispersion), 460 

this may explain some of the initial scatter in the tracer concentrations. 461 

The theory can be extended to take account of permeability contrasts between layers, 462 

but for the current test the corresponding result was barely different to the homogeneous case 463 

with averaged properties, and so the calculations are not detailed here. Vertical dispersivity 464 

has been ignored, although for larger injections into heterogeneous reservoirs this can cause 465 

a much longer tail in the back-production, as the tracer disperses from the high permeability 466 

layers into the low permeability ones. 467 

The fitted analytical theory then gives a straightforward means of estimating the degree 468 

of mixing in the reservoir, and the results are summarised in Table 2, where the range of the 469 

prediction is obtained by varying the parameter b within the range of the standard error. 470 

 471 

5.3.2 CO2 Source 472 

A potential uncertainty in the estimation of residual CO2 saturation using oxygen 473 

isotopes can further result from the mixing of CO2 from two different sources in the reservoir. 474 

The first 12.2 t of the 109.8 t of pure CO2 injected and residually trapped in the reservoir were 475 

Callide CO2 with a δ18O ratio of +26.05 ± 0.14 ‰, while the remaining 97.6 t of pure CO2 was 476 

BOC CO2 with an oxygen isotope signature of +29.30 ± 0.20 ‰. For the following estimation 477 

of residual CO2 saturation, we assumed perfect mixing of these two CO2 sources in the 478 

reservoir and derived the δ O18
CO2

 ratio to be used in Eq. (2) as a weighted average based on 479 

the amounts of the two injected CO2 sources. This results in a δ O18
CO2

 ratio for the residually 480 

trapped CO2 of +28.94 ± 0.12 ‰. We consider this approach as the most reliable to assess 481 
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δ O18
CO2

 since we do not have an estimate for the mixing of CO2 in the reservoir or of variable 482 

oxygen isotope signatures of CO2 in contact with water in the reservoir. 483 

 484 

5.4 Estimates of Residual CO2 Saturation in the Paaratte Formation  485 

For each U-tube sample collected for stable isotopes during the three days of water 486 

production, we used Eqs. (2)-(4) to estimate residual trapping levels. We used the 487 

thermodynamic model of Duan and Sun (2003) to derive solubilities and densities of CO2 in 488 

aqueous NaCl solutions under wellbore conditions for each individual day since temperatures 489 

and pressures varied throughout the experiment (Table 3). As mentioned above, the average 490 

wellbore temperatures and pressures for the times of U-tube sample collection were derived 491 

from the four temperature and pressure gauges in the perforated interval 492 

The first water production sample was collected ~7 hours after the start of water 493 

production and ~9 hours after the end of CO2-saturated water injection. With an isotopic 494 

enrichment factor of 36.84 ‰ based on Eq. (3) and a δ O18
CO2

value of +28.94 ± 0.12 ‰, we 495 

expect the reservoir water in contact with free-phase CO2 in the reservoir to change to lower 496 

δ18O values compared to the assumed δ O18
H2O

b
 value if isotopic equilibrium exchange 497 

between reservoir water and CO2 is established [Eq. (2)]. Our approach provides a value for 498 

XCO2

o  of 0.13 ± 0.06 (Table 4). This indicates that enough oxygen sourced from CO2 was 499 

available in the reservoir to change the oxygen isotope signature of the reservoir water after 500 

only a few hours. The XCO2

o  value provides a residual saturation estimate based on oxygen 501 

isotopes of 14 ± 9 % [Eq. (4)]. 502 

For the second sample collected on day 76 with a δ O18
H2O

f
 value of -6.27 ± 0.10 ‰, the 503 

methanol approach indicates that 22 ± 8 % of the oxygen in the water-CO2 system is sourced 504 

from the residually trapped CO2, which results in a residual saturation estimate of 28 ± 11 % 505 
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(Table 4). The sample collected on the last day of Phase 2.4 (day 77) has the lowest δ O18
H2O

f
 506 

value of all samples collected, with -6.46 ± 0.10 ‰, and is clearly distinct from the baseline 507 

water δ18O prior to the injection of free-phase CO2 (-6.01 ± 0.19 ‰) (Fig. 2 and 3). Our 508 

approach provides an XCO2

o  estimate of 32 ± 13 % (Table 4). This results in a residual 509 

saturation estimate in the target interval of 42 ± 16 %. Our data do not provide information 510 

about the timing of established final isotopic equilibrium between oxygen in water and CO2 in 511 

the reservoir, with previous laboratory studies showing that final isotopic equilibrium at 512 

reservoir conditions normally encountered during CCS projects (up to 190 bar and 90 °C) is 513 

reached within a one-week period (Becker et al., 2015; Johnson and Mayer, 2011). 514 

While our oxygen isotope data from reservoir water show a clear shift as a result of 515 

water-CO2 isotopic exchange in the reservoir within a few days, our estimates of residual CO2 516 

saturation are characterised by relatively large uncertainties. Several factors can result in 517 

uncertainties in the oxygen isotope approach. First, and most importantly, the oxygen isotopic 518 

distinction between the injected CO2 and baseline reservoir water in consideration of the 519 

isotopic enrichment factor at wellbore conditions is relatively small during the Otway 2B 520 

Extension. While a predictable δ18O shift to lower values in reservoir water in contact with free-521 

phase CO2 compared to baseline conditions was observed, the small isotopic distinction of 522 

the two main oxygen sources resulted in a small isotopic shift in the short time of the Otway 523 

2B Extension and a large uncertainty in SCO2
 estimates. Second, there are uncertainties 524 

resulting from the field experiment procedure and setup due to variable reservoir conditions 525 

during the entire project and uncertainty in the mixing ratios of water masses and CO2 sources 526 

with different isotopic signatures. These uncertainties result in the necessity to make 527 

assumptions about mixing ratios of gases and water masses in the reservoir, and about 528 

average reservoir conditions during the different phases. The wellbore conditions during the 529 

Otway 2B Extension were slightly different compared to the reservoir conditions; in particular, 530 

injection temperatures were lower compared to reservoir temperatures (~59 °C; Bunch et al., 531 

2012; Dance et al., 2012). Since it is uncertain at which exact temperature the isotopic 532 
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exchange reactions between free-phase CO2 and brine occurred in the reservoir, the 533 

difference in injection versus reservoir temperature presents an uncertainty in the estimation 534 

of residual CO2 saturation. All these factors can result in larger uncertainties than ideal in the 535 

baseline values of CO2 and reservoir water, and the isotopic enrichment factors assumed for 536 

the reservoir. 537 

 538 

5.5 Comparison of Independent Estimates of Residual CO2 Saturation 539 

We can compare our residual SCO2
 results from the three days of water production to 540 

independent estimates of residual CO2 saturation in the Otway 2B target interval based on 541 

noble gas tracers and pulsed neutron logging from the first Otway 2B experiment. For the 542 

comparison of results from the two Otway 2B field experiments, we have to consider that 543 

differences in residual saturation levels between the two experiments can result from 544 

differences in the timing in events, especially during the water flood.  545 

All three techniques to be compared measure a spatially varying residual saturation over 546 

different depths of investigation using different forms of averaging, and are characterised by 547 

specific uncertainties and limitations that have to be considered when comparing the results. 548 

Pulsed neutron logging provides residual CO2 saturation levels in the vicinity of the well (~25 549 

cm) at the point of time it is carried out (Adolph et al., 1994; Dance and Paterson, 2016). The 550 

CO2 in the pulsed neutron logging may or may not be residually trapped, using the strict 551 

definition of a core test. Pulsed neutron logging and core flooding experiments have further 552 

provided evidence that there is a range of residual trapping values throughout a region 553 

contacted by CO2, explained by the Land trapping model (Land, 1968). In this model, the final 554 

residual saturation is a function of the maximum CO2 saturation, and the maximum CO2 555 

saturation varies throughout the region contacted by CO2 (e.g., Dance and Paterson, 2016; 556 

Krevor et al., 2012, 2015; Land, 1968).  557 
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Tracer tests measure the CO2 saturation achieved after the drive to residual, and provide 558 

a flow-weighted average of residual saturation on a larger reservoir scale compared to pulsed 559 

neutron logging, similar to oxygen isotopes. Therefore, the tracer data provide an estimate of 560 

residual CO2 saturation for a larger reservoir rock volume characterised by residually trapped 561 

CO2 and reservoir water (LaForce et al., 2014). The results based on numerical simulations 562 

of the noble gas data from the first Otway 2B experiment are potentially prone to uncertainties 563 

due to the consideration of a noble gas partitioning coefficients based on noble gas-water 564 

experiments at low pressures (Fernández-Prini et al., 2003), while recently new noble gas 565 

partitioning coefficients in a supercritical CO2-water system at reservoir conditions became 566 

available and show differences to the previously published ones for low-pressure systems 567 

(e.g., Warr et al., 2015).  568 

Given the discussed uncertainties and limitations of the techniques, we can now 569 

compare the estimates based on oxygen isotope changes in reservoir water with the 570 

independent reconstructions of residual CO2 saturation. The stable isotope sample collected 571 

just 7 hours after the start of water production provides a near-wellbore estimate of residual 572 

trapping of CO2, and can therefore be best compared to measures based on pulsed neutron 573 

logging. Saturation profiles from the first Otway 2B experiment from pulsed neutron logging 574 

show an average residual saturation of 20 %, with an overall range of 7 to 32 % (Dance and 575 

Paterson, 2016). While we have to consider the possibility that the water sampled just 7 hours 576 

into the water production phase may not have achieved full isotopic equilibrium with residual 577 

CO2 in the reservoir, our estimate for this first stable isotope sample of 14 ± 9 % is similar with 578 

the saturation level reconstructed from pulsed neutron logging. The stable isotope sample 579 

from the second and third day can be best compared to the estimates based on noble gas 580 

injection and recovery. Reconstructed residual CO2 saturation levels from the multiphase flow 581 

simulations of noble gas injection and recovery are between 11 and 20 % for the first Otway 582 

2B experiment (LaForce et al., 2014). These estimates fall in the range of possible SCO2
 values 583 

based on stable isotopes from the second day (28 ± 11 %), but are lower than the results from 584 
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the last day of the Phase 2.4 water production stage (42 ± 16 %). This trend of increasing 585 

SCO2
 with distance from the wellbore based on the oxygen isotope shift in the reservoir water 586 

is different to the spatial residual trapping distribution in the reservoir from numerical reservoir 587 

simulations, which predict decreasing gas saturation with distance from the well, with residuals 588 

not exceeding 20 % further from the injection well.  589 

Three potential mechanisms can explain the reconstructed change in oxygen isotopes 590 

in the reservoir water during the three days of water production of Phase 2.4. The observed 591 

trend can be the result of (1) a higher residual further away from the wellbore that is not 592 

reconstructed using the noble gas injection and recovery method, (2) contact of the produced 593 

water from the last day of Phase 2.4 with the region of mobile CO2 ahead of the region driven 594 

to residual, and/or (3) higher residual saturation levels reconstructed from oxygen isotopes in 595 

waters longer in contact with residually trapped CO2 in different regions of the reservoir. The 596 

region that has been driven to residual does not extend very far into the reservoir and mobile 597 

CO2 from further out may have been pulled towards the well during production. Therefore, 598 

mechanism (2) could explain the high SCO2
 value reconstructed from the water sampled during 599 

the last day of Phase 2.4, but not the higher residual saturation estimate from the second day 600 

compared to the first day of water production during Phase 2.4. Mechanism (3) considers 601 

alteration of the isotopic values of reservoir water during the back-production that might 602 

complicate the interpretation of the oxygen isotope changes in terms of residual saturation in 603 

the reservoir. The oxygen isotope shift in the reservoir water away from baseline values may 604 

be simply due to the variable CO2 volumes the waters were in contact with in the reservoir, 605 

with water samples characterised by a longer residence time in the supercritical CO2-water 606 

system from the beginning to end of the production phase. During the back-production of 607 

Phase 2.4, the water may have continued exchanging oxygen with residual CO2 with variable 608 

isotopic signatures in the different regions of the reservoir, resulting in further perturbation of 609 

δ O18
H2O

f
. Since residual CO2 in the different regions of the reservoir may have already been 610 

in contact with other waters and has variable oxygen isotope values compared to the initially 611 
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injected δ O18
CO2

 value, and since it is uncertain if there was enough time for continuous 612 

isotopic equilibrium exchange of reservoir water on its way to the well during back-production, 613 

it is difficult to resolve the potential contribution of mechanism (3) with confidence. Therefore, 614 

we cannot estimate the effect of this mechanism for the observed changes in oxygen isotopes 615 

of the reservoir water during the experiment. 616 

Consequently, we are left with three potential mechanisms to explain the observed 617 

oxygen isotope shift in reservoir waters during the residual saturation test, particularly further 618 

away from the well. Future modelling and laboratory efforts to study the behaviour of oxygen 619 

isotopes in the Paaratte Formation at reservoir conditions, considering timing of injection and 620 

production events similar to Stage 2 of the Otway 2B Extension, would help to test our 621 

observation of variable residual trapping distribution in the reservoir, and could help further 622 

exploring the validity of mechanisms (2) or (3). Until then, all three potential reasons have to 623 

be considered in the interpretation of the oxygen isotope shift during the three days of water 624 

production, and the true nature of the residual saturation distribution further away from the 625 

well remains uncertain. However, mechanisms (2) and (3) are improbable to explain the 626 

observed oxygen isotope shift from baseline values for the first stable isotope sample collected 627 

shortly after the start of back-production. Therefore, this first water sample is the most reliable 628 

of the water production samples in terms of reconstructing residual trapping of CO2 in the 629 

formation. Since the reconstructed residual saturation based on oxygen isotopes from this 630 

sample is similar to near-wellbore residual saturation values based on pulsed neutron logging, 631 

oxygen isotopes during the Otway 2B Extension show potential as an inherent tracer for 632 

residual saturation in a single-well experiment that should be further explored in future field 633 

and laboratory experiments.   634 

 635 

 636 

6. Conclusions and Future Prospect 637 
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Field experiments at EOR sites in Texas (Frio experiment) and Alberta (Pembina 638 

Cardium CO2 monitoring project) provide evidence for the viability of using oxygen isotopes 639 

measured in reservoir water and CO2 to estimate SCO2
 over timescales longer than one week 640 

(Johnson et al., 2011; Kharaka et al., 2006). This is a parameter that has been difficult to 641 

assess using previous monitoring techniques but one which is crucial for determining the 642 

efficiency of a CO2 storage site. The application of oxygen isotopes has further been supported 643 

by laboratory rock core experiments (Barth et al., 2015; Johnson and Mayer, 2011), water data 644 

from CO2-rich springs (e.g., Céron and Pulido-Bosch, 1999; Céron et al., 1998; Harris et al., 645 

1997), and theoretical studies (Li and Pang, 2015). Our study is the first to provide evidence 646 

for a shift in oxygen isotope ratios of reservoir water due to isotopic equilibrium exchange with 647 

free-phase CO2 in a reservoir over only a few days, compared to stable baseline water values 648 

prior to CO2 injection (Fig. 2 and 3). 649 

During Phase 2 of the Otway 2B Extension, the reservoir was characterised by residually 650 

trapped CO2 and fully CO2-saturated reservoir water. In this setup, oxygen isotope changes in 651 

the reservoir water can be used to estimate flow-weighted averages of residual CO2 652 

saturation. Our data provide residual trapping levels for reservoir rock volumes at different 653 

distances from the wellbore. The other techniques used to study residual trapping during the 654 

first Otway 2B experiment, noble gas tracers and pulsed neutron logging, are variable in their 655 

spatial distribution of reconstructed trapping levels and have different depths of investigation 656 

in the reservoir. The estimates of residual saturation based on oxygen isotopes from the 657 

different days of water production indicate an increase in residual trapping levels with distance 658 

from the wellbore. This trend of increasing residual saturation with distance from the wellbore 659 

is not consistent with reservoir simulations, which predict the opposite trend. We show that 660 

there are three potential mechanisms to explain the observed oxygen isotope shift from 661 

baseline values for the water samples further away from the wellbore, resulting in considerable 662 

uncertainty about the true residual saturation distribution in the reservoir at distance from the 663 

well. However, only isotopic equilibrium exchange between water and residually trapped CO2 664 
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can explain the isotopic shift in the water from near the wellbore. The similarity of the oxygen 665 

isotope-based result from this water sample with independent estimates based on pulsed 666 

neutron logging indicates that monitoring of oxygen isotope ratios of reservoir water in contact 667 

with free-phase CO2 may serve as an inexpensive inherent tracer with potential to reconstruct 668 

flow-weighted averages for residual CO2 saturation on a reservoir scale within a few days 669 

without an additional tracer. 670 

While our most reliable sample of reservoir water in contact with residually trapped CO2 671 

during the Otway 2B Extension indicates the potential of using oxygen isotopes to reconstruct 672 

residual saturation in a single-well experiment, we show that the current setup of the Otway 673 

2B Extension is not ideal to reconstruct residual trapping levels further away from the wellbore 674 

using this tracer. Further, our residual trapping estimates based on oxygen isotopes are prone 675 

to large uncertainties, which is mainly due to the small isotopic distinction of the baseline water 676 

and CO2 values leading to small predictable shifts in δ18O of reservoir water in contact with 677 

the injected CO2. The setup of the field experiment, with two different sources of CO2, injection 678 

of two CO2-saturated water masses with different oxygen isotope signatures, and lower 679 

injection temperatures compared to reservoir temperatures, results in additional uncertainties 680 

in the determination of baseline conditions and in the estimation of SCO2
. For future 681 

applications of this inherent tracer in an ideal single-well test, relatively simple measures can 682 

be taken to reduce these uncertainties. It should be guaranteed that baseline reservoir water 683 

and free-phase CO2 are isotopically distinct enough to produce large shifts in the reservoir 684 

water δ18O as a result of water-CO2 oxygen isotope exchange, resulting in small uncertainties 685 

in SCO2
 estimates. This can be achieved by testing the isotopic signature of both oxygen 686 

sources prior to the start of an experiment. In case of a small isotopic distinction, the CO2 or 687 

water to be injected may be isotopically spiked to further the distinction. The injection of CO2 688 

from a single source during the injection of pure CO2 would increase the reliability and 689 

precision of SCO2
 estimates. Injection temperatures similar to reservoir conditions further away 690 
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from the wellbore would further avoid uncertainties in the determination of the oxygen isotopic 691 

enrichment factor in the reservoir, but this can be difficult to achieve in field operations. 692 
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Figure captions 881 

Figure 1: Water δ2H from the Otway 2B Extension. Samples from injection periods 882 

(green (CO2) and blue (water) bars at bottom of graph where numbers indicate tonnage) are 883 

shown as open symbols, while samples from production periods (orange bars, number = 884 

tonnage) are filled symbols. U-tube samples are shown as triangles, and bottle samples are 885 

squares. We differentiate by colour the initial water production and Phase 1.1 (black), Phase 886 

1.2 (red), the early production phase in Phase 2 (magenta), Phase 2.1 (blue), and Phases 2.3 887 

and 2.4 (green). Error bars show the analytical uncertainty of ±2 ‰. The black line indicates 888 

the average of all samples (excluding the duplicate sample with much higher values from the 889 

initial water production) ± 1σ uncertainty.  Periods of pulsed neutron logging (red bars at 890 

bottom) are shown with production data.  891 

 892 

Figure 2: Water δ18O from the Otway 2B Extension. Samples from injection periods 893 

(green (CO2) and blue (water) bars at bottom of graph where numbers indicate tonnage) are 894 

shown as open symbols, while samples from production periods (orange bars, number = 895 

tonnage) are filled symbols. U-tube samples are shown as triangles, and bottle samples are 896 

squares. We differentiate by colour the initial water production and Phase 1.1 (black), Phase 897 

1.2 (red), the early production phase in Phase 2 (magenta), Phase 2.1 (blue), and Phases 2.3 898 

and 2.4 (green). Error bars show the analytical uncertainty of ±0.1 ‰. The black line indicates 899 

the average of all samples from before the water production of the residual saturation test 900 

(prior to day 75) ± 1σ uncertainty. Periods of pulsed neutron logging (red bars at bottom) are 901 

shown with production data. 902 

 903 

Figure 3: δ18O vs. δ2H in water samples from Phases 2.1, 2.3 and 2.4. Samples from 904 

injection and production periods are shown as open and filled symbols, respectively. U-tube 905 

samples are shown as triangles, and bottle samples as squares. Samples from Phase 2.1 are 906 
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in blue, from Phase 2.3 in red, from the water injection for Phase 2.4 in magenta, and for the 907 

water production of Phase 2.4 in different green colours. The thick black line indicates the 908 

local meteoric water line (LMWL) for Melbourne (Hughes and Crawford, 2012), and the black 909 

box symbolises the 1σ range of the baseline water samples prior to water production for Phase 910 

2.4.  911 

 912 

Figure 4: Methanol concentration (ppm) in the back-produced formation water in Phase 913 

2.4 (open circles), compared to the fit to a simple analytical theory described in the text (solid 914 

line). The horizontal axis is the cumulative produced volume at a given time divided by the 915 

total injected volume of 67.2 t. 916 

 917 
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Tables 929 

 930 

Table 1: Time schedule of Phase 2 of the Otway 2B Extension. Days relate to the start of 931 

the Otway 2B Extension on 3 October 2014. 932 

Day Phase Description 
Injection 
CO2 (t) 

Injection 
Water (t) 

Production 
Water (t) 

Water rate 
(t/day) 

CO2 rate 
(t/day) 

63-64  Water production   75.1 50.4  

65 2.1 
Water injection with 

noble gases and 
methanol 

 67.0  199.5  

65-67 2.1 Water production   122.2 50.4  

68  Pulsed neutron logging      

68-72 2.2 Pure CO2 injection 109.8    32.9 

72  Pulsed neutron logging      

72-74 2.3 
CO2-saturated water 

injection 
17.5 323.7  155.6 8.4 

74  Pulsed neutron logging      

75 2.4 
CO2-saturated water 
injection with noble 

gases and methanol 
3.9 67.2  155.1 9.0 

75-77 2.4 Water production   128.5 49.5  

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 
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Table 2: Results of the methanol analysis for the fraction of the injected CO2-saturated water 941 

mass for Phase 2.4 (second water mass) during the time intervals of U-tube sampling. The 942 

results are based on measured methanol concentrations in the U-tube samples and the fitted 943 

analytical model. 944 

Day of 

experiment 
Time Produced water (t) 

Fraction of production of second injected 

CO2-saturated water mass 

75 19:45 – 21:15 12.1 1.00 

76 17:42 – 19:12 57.4 0.70 ± 0.13 

77 19:20 – 20:50 110.2 0.04 ± 0.02 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 
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Table 3: Wellbore conditions for time periods of U-tube sampling during Phase 2.4. CO2 959 

solubilities and densities were estimated after Duan and Sun (2003). Parameters A, B and C 960 

are input parameters for Eq. (4). 961 

Day Time 

Average 

temperature 

(°C) 

Average 

pressure 

(bar) 

CO2 

solubility 

(mol/kg) 

CO2 

density 

(g/L) 

A 

(mol/L) 

[Eq. (4)] 

B 

(mol/L) 

[Eq. (4)] 

C

(mol/L) 

[Eq. (4)] 

75 
19:45 – 
21:15 

42.47 139.48 1.27 744.01 33.82 2.53 55.51 

76 
17:42 – 
19:12 

45.26 139.37 1.24 720.15 32.73 2.48 55.51 

77 
19:20 – 
20:50 

47.04 139.34 1.23 704.36 32.02 2.45 55.51 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 
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Table 4: Oxygen isotope-based results of residual CO2 saturation using Eqs. (2)-(4) for the 974 

three time intervals of U-tube sampling during Phase 2.4.  975 

Day of 

experi-

ment 

Time 
δ O18

H2O

b
  

(‰ VSMOW) 

ε  

[Eq. (3)] (‰) 

XCO2

o  1 

[Eq. (2)] 

SCO2
  

[Eq. (4)] 

75 19:45 – 21:15 -5.86 ± 0.07 36.84 0.13 ± 0.06 0.14 ± 0.09 

76 17:42 – 19:12 -5.96 ± 0.05 36.34 0.22 ± 0.08 0.28 ± 0.11 

77 19:20 – 20:50 -6.17 ± 0.07 36.03 0.32 ± 0.13 0.42 ± 0.16 

 976 
1 Calculated using a constant δ O18

CO2
value of +28.94 ± 0.12 ‰ and measured δ O18

H2O

f
 values of -6.12 ± 0.10 ‰ 977 

for day 75, -6.27 ± 0.10 ‰ for day 76, and -6.46 ± 0.10 ‰ for day 77. 978 
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