329 research outputs found

    Marfe formation in diverted tokamaks

    Get PDF

    Dynamic stability of edge cooled superconducting tapes

    Get PDF

    Yang-Mills Magneto-Fluid Unification

    Get PDF
    We generalize the hybrid magneto-fluid model of a charged fluid interacting with an electromagnetic field to the dynamics of a relativistic hot fluid interacting with a non-Abelian field. The fluid itself is endowed with a non-Abelian charge and the consequences of this generalization are worked out. Applications of this formalism to the Quark Gluon Plasma are suggested.Comment: 6 pages, RevTex

    The effect of sheared axial flow on the interchange mode in a hard-core Z-pinch

    Get PDF

    Equilibrium beta limits in a dipole configuration

    Get PDF

    Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    Get PDF
    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of E-J.Kim and P.H.Diamond, Phys.Rev.Lett. 90, 185006 (2003) and M.A.Malkov and P.H.Diamond, Phys.Plasmas 16, 012504 (2009) which nonlinearly couple the evolving temperature gradient, micro-turbulence and a mesoscale flow; and in the extension of H.Zhu, S.C.Chapman and R.O.Dendy, Phys.Plasmas 20, 042302 (2013), which couples to a second mesoscale flow component. The temperature gradient rises, as does the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.Comment: 8 pages, 14 figure

    Shafranov's virial theorem and magnetic plasma confinement

    Get PDF
    Shafranov's virial theorem implies that nontrivial magnetohydrodynamical equilibrium configurations must be supported by externally supplied currents. Here we extend the virial theorem to field theory, where it relates to Derrick's scaling argument on soliton stability. We then employ virial arguments to investigate a realistic field theory model of a two-component plasma, and conclude that stable localized solitons can exist in the bulk of a finite density plasma. These solitons entail a nontrivial electric field which implies that purely magnetohydrodynamical arguments are insufficient for describing stable, nontrivial structures within the bulk of a plasma.Comment: 9 pages no figure

    Magnetic Geometry and the Confinement of Electrically Conducting Plasmas

    Get PDF
    We develop an effective field theory approach to inspect the electromagnetic interactions in an electrically neutral plasma, with an equal number of negative and positive charge carriers. We argue that the static equilibrium configurations within the plasma are topologically stable solitons, that describe knotted and linked fluxtubes of helical magnetic fields.Comment: 9 pages 1 ps-figur
    • …
    corecore