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Abstract 

It is well known that a static (i.e. 0=v ) closed field line configuration, such as a 

levitated dipole, or a hard-core Z-pinch, can be stabilized against ideal MHD interchange 

modes when the edge pressure gradient is sufficiently weak. The stabilizing effect is 

provided by plasma compressibility. However, many laboratory plasmas exhibit a 

sheared velocity flow, (i.e. 0⋅∇ ≠n v ), and this flow may affect the marginal stability 

boundary. The present work addresses this issue by an analysis of the effect of axially 

sheared flow on interchange stability in a hard-core Z-pinch, a cylindrical model for the 

levitated dipole configuration. Specifically, the goal is to learn whether sheared flow is 

favorable, unfavorable, or neutral with respect to MHD stability.  Analytic calculations of 

marginal stability for several idealistic velocity profiles show that all three options are 

possible depending on the shape of the shear profile. This variability reflects the 

competition between the destabilizing Kelvin-Helmholtz effect and the fact that shear 

makes it more difficult for interchange perturbations to form. Numerical calculation are 

also presented for more realistic experimental profiles and compared with the results for 

the idealized analytic profiles.  
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I. Introduction 

The goal of this paper is to theoretically investigate the effect of sheared axial flow on 

the MHD stability of a closed line configuration.   The primary experimental application 

of the analysis is to the levitated dipole experiment (LDX) [1,2].  The motivation is as 

follows.  The toroidal LDX configuration can be modeled theoretically as a cylindrical 

hardcore Z-pinch.  It is well known [3] that a simple Z-pinch without an equilibrium flow 

(i.e. 0=v ) is potentially unstable to two MHD modes - the 1m =  helical mode and the 

0m =  interchange mode.  The hardcore stabilizes the 1m =  mode.  In a closed line 

configuration the 0m =  interchange mode (i.e. the sausage instability) can be stabilized 

by a sufficiently weak pressure gradient near the edge of the column.  The maximum 

allowable pressure gradient directly sets the β  limit of the plasma, whose value is critical 

to the ultimate viability of the concept.   

However, many laboratory plasmas exhibit a substantial equilibrium sheared velocity 

flow, (i.e. 0⋅∇ ≠n v ).  This flow may affect the 0m =  marginal stability boundary, and 

hence the maximum value of β . The present work directly addresses this issue by an 

analysis of the effect of axially sheared flow on the ideal MHD stability limit of the 

0m =  mode in a hardcore Z-pinch.  Specifically, the goal is to learn whether sheared 

flow is favorable, unfavorable, or neutral with respect to MHD stability.  Analytic 

calculations of marginal stability for several idealistic velocity profiles in the slab limit 

show that all three options are possible depending on the shape of the shear profile. This 

variability reflects the competition between the destabilizing Kelvin-Hemholtz effect and 

the fact that shear makes it more difficult for interchange perturbations to form at short 
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wavelengths. Numerical calculation are presented for more realistic experimental profiles 

and compared with the results for the idealized analytic profiles. The numerical results 

are also used to predict the change in critical β  due to realistic velocity shear profiles. 

The effects of flow on MHD stability have been studied for many years and as such it 

is useful to review some of the most relevant studies to put the present work in 

perspective.  As is well know the highly desirable property of self-adjointness in the 

linear stability equations vanishes when flow is included [4].  This has caused a large part 

of the effort to focus on simple geometries such as a slab or cylinder.  Even then, the 

resulting problems remain quite complicated mathematically, often requiring numerical 

solutions for the eigenvalues and eigenfunctions.   

Some early studies involved the effect of rotation on a pure θ -pinch.  Taylor [5] 

showed that centrifugal effects could drive rotational instabilities for 2m ≥  modes for 

0k = , presumably the worst mode in terms of minimizing the stabilizing effects of line 

bending.  Freidberg and Wesson [6] showed the counter-intuitive result that 1m =  could 

also be driven unstable, but only for a finite, non-zero value of k .  This unexpected 

result arose from the non-self adjointness of the MHD force operator.  A similar situation 

arises in the present work. 

Several authors have investigated the effect of sheared axial flow on a general screw 

pinch.  Bondeson, Iacono and Bhattacharjee [7] studied the effects of flows on the 

Suydam criterion.  They found that the flow decreases the maximum stable pressure 

gradient.  E. Hameri [8] came to the similar conclusions using analytical approximations.  

The effect of toroidal rotation on the stability of ballooning modes was considered by 

E. Hameri and P. Laurences [9] in mid the mid-80s.  They found that the toroidal rotation 



 4

had a destabilizing effect on the plasma β  limit . However, ideal ballooning modes are 

of limited interest to LDX because of the absence of magnetic shear [10,11]. They do not 

exist in a cylindrical Z-pinch.   

Recent interest in Z-pinch plasmas has led to several numerical studies of the stability 

of plasmas with sheared flows. V. Sotnikov et al [12] and Zhang and Ding [13] showed 

that supersonic flows could decrease the growth rate of macroscopic perturbations. Also, 

partial stabilization of the plasma column by axial sheared flows was reported by 

Desouza-Machado, Hassam and Ramin Sina[14].  The Rayleigh-Taylor instability, a 

close analog of the interchange instability, has also been of interest to the geophysics 

community. Kuo [15] in 1963 and Guzdar et. al.[16] in 1982 found that velocity shear 

decreases the growth rate of the Rayleigh-Taylor mode and showed that unlike the static 

case, the most unstable wavenumber is finite. An analytic slab geometry calculation 

carried out by A.Hassam[17] demonstrated that velocity shear  decreases the growth rate 

of the Rayleigh-Taylor instability and non-linearly positively stabilizes marginally stable 

profiles.  In a similar calculation Hassam [18] also showed that for the short wavelength 

interchange mode in an elongated plasma, sheared flows stabilize the plasma.   

At the same time the introduction of sheared flows may give rise to KH (Kelvin-

Helmholtz) instability [19].  Experimental observations and the relative importance of the 

KH mode vs. flow shear stabilization near a plasma limiter were reported by Brochard et 

al [20]. Many previous studies, often motivated by short-lived Z-pinches, typically 

concentrated on the effect of sheared flows on highly unstable plasma profiles, but did 

not consider the effect of an axial flow on weakly unstable or marginally stable plasma 

pressure profiles. 
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The net result is that while considerable progress has been made, at the present time 

there is no clear and unique understanding of whether or not an axial sheared flow would 

be favorable, unfavorable, or neutral with respect to the important question of β  limits in 

a hardcore Z-pinch, modeling the LDX configuration.  This is the main objective of the 

present paper. 

The paper is organized as follows: In Section 2 the standard second order radial 

eigenvalue equation for the m = 0 interchange mode in a static Z-pinch is modified to 

include non-zero axial flows. In Section 3 we consider the slab limit of the LDX 

configuration. Section 4 presents an analytical derivation of new local stability criteria for 

several idealistic velocity shear profiles. In section 5 we return to the cylindrical 

geometry and present numerical calculations, which determine the stability boundaries 

using more realistic experimental profiles for the plasma pressure and the flow velocity.  

II. Eigenmode equation for a general Z-pinch with an axial flow 

This section discusses the eigenvalue equation for a cylindrical screw pinch 

configuration, including an axial flow.  The starting point is the ideal MHD model 
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The non-trivial quantities entering the analysis are as follows: the pressure 

0 1p p p= + , the magnetic field 0 0z zB Bθ θ= + + 1B e e B , and the axial velocity 
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0 zV= + 1v e v  .  Here all equilibrium quantities are functions only of r  [i.e. 0 0 ( )Q Q r= ] 

and all perturbed quantities have the standard normal mode dependence 

( )1 1 expQ Q (r) i ωt mθ kz= − + +⎡ ⎤⎣ ⎦ .  For simplicity the “zero” subscript is hereafter 

suppressed on all equilibrium quantities.  Note that with an axial flow the eigenvalue ω  

is in general complex. The next step is to introduce the displacement vector ξ , defined as 

1 iω= − + ⋅∇ − ⋅∇v ξ V ξ ξ V .  Following the usual MHD stability procedure [21] it is 

straightforward to show that the full eigenmode equation for the general screw pinch in 

the presence of an axial flow has exactly the same form as without flow if we make the 

formal substitution ( )ω ω kV r→ − . 

The general eigenvalue equation reduces considerably for interchange modes in a 

hard-core Z-pinch.  The simplified equation is obtained by setting ( ) 0zB r =  and 0m = .  

Also, further simplification arises by making the well satisfied approximation that the 

unstable eigenvalues of interest are much smaller in magnitude than the compressional 

Alfven frequency: AkVω .  Under these assumptions the final eigenmode equation is 

given by 

 ( ) ( )2 22

2
0S

d ρ dψω kV K ω kV ψ
dr k r dr r

ρ ω⎡ ⎤ ⎡ ⎤− + − − =⎢ ⎥ ⎣ ⎦⎣ ⎦
 (2) 

where 2 2 2( ) 2 /S sr V rω = , 2 ( ) /SV r pγ ρ=  is the square of the adiabatic sound speed, 

 
2

2

0

2( ) θ

θ

rp BK r
p B γµ pγ
′

= +
+

 (3) 

is the Kadomtsev stability function [3] and ( )rψ r rξ=  is proportional the radial 

component of the perturbation.   Kadomtsev showed that ( ) 0K r >  is a necessary and 
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sufficient local stability criterion against the 0m =  interchange mode for static 

equilibrium.  

The appropriate boundary conditions on Eq. (3) require that the function ψ  vanish at 

the plasma boundaries. 

 ( ) ( ) 0c wr rψ ψ= =  (4) 

Here, cr  is the radius of the hard core and wr  is the radius of the outer shell.  See Fig.1. 

The usual experimental situation has w cr r .   

The normal mode approach requires solving equation (2) subject to the boundary 

conditions given by Eq. (4) for given plasma and velocity profiles. The full solution for 

arbitrary profiles can only be found numerically.  

This section closes with an interesting suggestive, but misleading intuition, about the 

effect of flow on stability resulting from a quadratic integral relation obtained by 

multiplying Eq. (2) by ∗ψ  and averaging over the plasma volume. The requirements that 

both real and imaginary parts vanish yield the following expression for the growth rate 

iω :  22 2 2 2
10 1i s K k V kVω ω= − + − .  Here 
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Clearly the condition for stability is given by 

 
22 2 2

10 1s K k V kVω ≥ −  (6) 

Note that for uniform or zero axial flow the right hand side of Eq. (6) vanishes and 

the stability criterion reduces to that given by Kadomtsev.  When there is shear in the 

flow, Schwartz’s inequality implies that the right hand side is always positive.  The 
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implication would seem to be that it is now more difficult to achieve stability and 

therefore flow shear is always destabilizing.  This conclusion is not correct for the 

following reason.  Since the problem is not self-adjoint the Energy Principle does not 

apply.  Thus, while substituting the eigenfunction for the static case into Eq. (6) as a trial 

function suggests a more unstable situation, there is no guarantee that the actual 

eigenvalue is always approached from the stable side of the spectrum.  In fact, in certain 

important examples discussed shortly it is found that just the opposite occurs, 

demonstrating that velocity shear can be a stabilizing effect in spite of misleading 

intuition generated by Eq. (6). 

In the next chapter we derive a slab geometry approximation that leads to an 

analytically solvable equation.  

III. The slab geometry model 

  The counter intuitive effect just described as well as a more general view of the 

effects of flow shear can be obtained by taking a simple slab limit of the eigenvalue 

equation, which allows an analytic solution.  The slab limit is somewhat artificial with 

respect to the actual experimental situation in LDX but still makes good sense physically.  

The limit is obtained by assuming the hard core radius and outer boundary surface are 

close to one another so that the plasma resembles a thin shell.  Specifically, we assume 

that ( ) /( ) 1w c w cr r r r− + .  We then expand 0r r x= +  where 0 ( ) / 2c wr r r= + .  The range 

of the new independent variable x  is defined by a x a− ≤ ≤  where ( ) / 2w ca r r= −  and 

0a r . The eigenvalue equation reduces to 

 ( ) ( )2 22 2 0p S p

d dψV V K k V V
dx dx

ω ψ⎡ ⎤ ⎡ ⎤− + − − =⎢ ⎥ ⎣ ⎦⎣ ⎦
 (7) 
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where /pV kω=  is the phase velocity, 2 2 2 2
0 0 0( ) 2 ( ) /S S Sr V r rω ω= =  and 

( ), ( )V V x K K x= =  are the spatially varying velocity and Kadomtsev profiles.  

Introducing ( ) ( ) /( )pψ x U x V V= − , leads to the final desired form of the slab eigenvalue 

equation: 

 
2

2
2 0

( )
S

P p

K VU k U
V V V V

ω⎡ ⎤′′′′ − − + =⎢ ⎥− −⎢ ⎥⎣ ⎦
 (8) 

In the next chapter this equation is solved analytically for several idealistic velocity 

profiles to determine the effect of sheared axial flow on marginal stability.  

IV. Marginal stability for the slab model 

Equation (8) can be solved analytically for a variety of profiles consisting of constant 

and linear velocity segments. The case of a purely constant velocity is uninteresting.  It 

does not change the self-adjointness of the MHD force operator and the stability analysis 

immediately reduces to that of the static case by the introduction of a Doppler shifted 

frequency.  

The more interesting cases considered treat three specific velocity profiles, each with 

axial shear: (a) a constant shear velocity profile, (b) a triangle-shaped velocity profile 

with velocity shear positive in one region and negative in the other and (c) an “S” shaped 

profile where the shear is constant in a narrow region and connects to constant velocity 

regions at each edge with equal but opposite sign velocities.  For each of these models the 

full dispersion relation is derived leading to a determination of the marginal stability 

criterion. 

A. The case of constant velocity shear. 
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This configuration models the situation where the Kadomtsev function is negative 

(i.e. 0K < ) over a narrow region of the plasma  (i.e. is destabilizing) and the velocity 

shear is a smooth function over this region.  An illustration of the smooth cylindrical 

profiles and the corresponding slab approximation is shown in Fig. 2.   

The slab model is further simplified by assuming that max min/ 1K K−  with max 0K >  

and min 0K < .  In this limit the outer solutions in the regions L x a< <  decay very 

rapidly, a behavior that is accurately approximated by modifying the boundary conditions 

such that ( ) ( ) 0L Lψ ψ− = =  where 2
min min/L K K ′′≈ − .  As is shown shortly the marginal 

stability boundary is independent of L .  For this model we assume that in the region 

0 x L< <  the Kadomtsev function is a constant, min( ) 0K x K= < , and the velocity profile 

is smooth, ( ) (0)V x V x V x′ ′= = .  Under these assumptions the eigenvalue equation 

reduces to 

 
2

2 min
2 0

( )
S

P

KU k U
V x V
ω⎡ ⎤′′ − − =⎢ ⎥′ −⎣ ⎦

 (9) 

The general solution is easily found in terms of modified Bessel functions and is 

given by 1/ 2
1 2

ˆ ˆ( ) ( ) ( )U z z C K z C I zν ν
⎡ ⎤= +⎣ ⎦  or in terms of ψ  

 [ ]1/ 2
1 2( ) ( ) ( )z z C K z C I zν νψ −= +  (10) 

Here /z kx Vω ′= −  is a complex coordinate and the order ν  is a function of minK : 

 
2

min
2

1
4

S Kv
V

ω= −
′

 (11) 

The boundary conditions lead to a simple dispersion relation: 
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( ) ( )
( ) ( )det 0

I z K z
I z K z

ν ν

ν ν

+ +

− −

=  (12) 

where /z kL Vω± ′= ± −  

The eigenvalue ω  as a function of wave number k  is illustrated in Fig. 3 for a typical 

unstable case, 3 / 2ν = .  For this value the Bessel functions reduce to simple exponentials 

and algebraic terms from which the dispersion relation reduces to 

 ( ) ( )
1/ 22

1/ 2
min

1coth 2
2S

i Kω κκ κ
ω

⎡ ⎤+= − −⎢ ⎥
⎣ ⎦

 (13) 

where kLκ = .  Also shown the growth rate curve for the static case 0V ′ =  whose growth 

rate is given by 

 
( )

( )1/ 2
min1/ 22 2 / 4S

i Kω κ
ω κ π

= −
+

 (14) 

Observe that the growth rate of the mode with a sheared flow increases with k starting 

at the origin, reaches a maximum, and finally decreases to zero at the maximum stable 

wave number maxk k= .  As ν  decreases towards the value unity (corresponding to minK  

increasing from the negative direction) the region of unstable wave numbers shrinks to 

zero; that is max 0k →  as 1ν → .  

The marginal stability boundary can be found analytically [22] by focusing attention 

on the behavior of the dispersion relation for small kL .  Specifically, we write 

r iiω ω ω= + , expand 1ν δν= + , and assume the following ordering scheme: 

/ 1i V kLω δν′ .  Also 0rω =  by symmetry.  Under these assumptions the small 

argument expansion of the Bessel functions can be used and the dispersion relation 

reduces to 
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 ( )
1/ 2

min

min

1
2
i K kV

K
πω ν⎛ ⎞ ′= − −⎜ ⎟′′⎝ ⎠

 (15) 

Note that for 1ν > , there always exists an exponentially growing solution to the 

eigenmode equation. After a transformation of variables, it can be shown that this result 

overlaps with the early result of Kuo [15] who was interested in the geophysical problem 

of Rayleigh-Taylor instabilities in stratified fluids.   

The conclusion is that a constant shear flow has a stabilizing effect on the interchange 

mode.  The intuition is that flow shear inhibits the ability of the plasma to form very short 

wavelength instabilities, which are the most unstable modes for the case without flow. 

Specifically, the marginal stability boundary min 0K ≥  for the case of zero flow relaxes to 

2 2
min (3 / 4) / SK V ω′≥ −  for a constant shear flow.  In terms of the physical variables the 

modified stability criterion can be written as  

 
2 2

2 2
0

2 3
4

θ

θ S

Brp V
p B γµ pγ ω
′ ′
+ > −

+
 (16) 

When the flow velocities become comparable to the sound speed then the stability 

modifications become substantial. 

B. The case of a velocity profile with no-slip boundary conditions  

The situation modeled here corresponds to a plasma confined between rigid boundary 

surfaces with no-slip boundary conditions at each surface.  Sketches of the actual 

cylindrical problem and the slab approximation are illustrated in Fig.4.  Note that we 

again assume that min 0K < .  The axial velocity profile is similar to that of a liquid 

flowing between two pipes of different radii.   
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The solution to the eigenvalue problem can be simplified by noting that the velocity 

has even symmetry: ( ) ( )V x V x= − .  This implies that the eigenfunctions are either 

purely even or purely odd.  The most unstable case corresponds to an eigenfunction with 

no radial nodes.  Therefore, the appropriate boundary conditions on ψ  can be written as 

( )0 0ψ ′ =  and ( ) 0aψ = .  Since the shear in the region 0 x a≤ ≤  is constant the solution 

can again be written as a sum of Bessel functions: [ ]1/ 2
1 2( ) ( ) ( )z z C K z C I zν νψ −= + .  

Here, ( ) /z k a x Vω ′= − −  with 0V ′ >  and ν  is again given by Eq. (11).  Applying the 

boundary conditions leads to the following dispersion relation 

 
1/ 2 1/ 2

0 0 0 0( ) / ( ) /det 0
( ) ( )a a

I z z K z z

I z K z
ν ν

ν ν

′ ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ =  (17) 

where 0 (0) /z z ka Vω ′= = −  and ( ) /az z a Vω ′= = − . 

The qualitative properties of the instability can be obtained by examining the 

dispersion relation for the unstable case 3/ 2ν = .  For this case the dispersion relation 

reduces to a third order polynomial in the variable /V kaω ′Ω = −  given by  

  

 ( ) ( )3 2tanh 2 2 tanh 0κ κ κ κ κΩ + + Ω + Ω + − =  (18) 

where kaκ = .  The real and imaginary parts of the Doppler shifted frequency are plotted 

in Fig. 5. Note that in this case the mode is unstable even as ka → ∞ .  In fact the 

ka → ∞  limiting value of the unstable eigenfrequency is easily found and can be written 

as 

 1ka i
V
ω − = +

′
 (19) 
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Further numerical studies show that instability persists until ν  decreases to its 

marginal value 1/ 2ν = .  The marginal stability boundary can also be found analytically 

[22] by focusing on the region of small ka .   Applying the ordering scheme 

/ 1i V kaω δν′  and using the small argument expansion of the Bessel functions 

leads to 

 ( )1
2

ka i
V
ω πδν δν δν⎡ ⎤= + +⎢ ⎥′ ⎣ ⎦

 (20) 

where 1/ 2ν δν= + .  For 1/ 2ν >  there is always an unstable solution.  The marginal 

stability limit 1/ 2ν =  corresponds to the value min 0K = .  In other words a no-slip 

velocity flow does not affect the stability boundary, which reduces to the original 

Kadomtsev stability limit 

 
2

2
0

2 0θ

θ

rp B
p B γµ pγ
′
+ >

+
 (21) 

The physical explanation for this behavior is as follows.  In the limit of zero flow the 

unstable eigenfunctions tend to be localized in the region where min 0K K= < .  With a 

no-slip velocity flow of the type considered here there is by definition always a region 

where 0V ′ = .  If  min 0K <  in this region then localized modes will not feel the stabilizing 

effects of velocity shear and the stability boundary reduces to the no-flow limit.  

C. The case of a counter-streaming velocity profile  

The last model of interest involves a flow pattern consisting of two regions of plasma 

counter-streaming with respect to one another.  The regions are connected by a thin of 

layer of plasma with a constant shear profile.  The profiles for the cylindrical geometry 

and slab approximation are illustrated in Fig. 6.  Because the flow pattern has an “S-like” 
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shape the second derivative changes sign somewhere in the plasma suggesting that the 

Kelvin-Helmholtz instability may be excited. 

The analysis of this configuration is similar to case (A).  The main difference is that 

the boundary conditions at x L= ±  must be modified as follows.  In the constant velocity 

regions L x a≤ ≤  the solution to the eigenvalue equation reduces to simple exponential 

functions: exp( )kxα±  where ( )22 2
min1 /S K kV Lα ω ω ′= − − .  The perturbed displacement 

is again required to vanish at x a= ± .  The solutions in these regions reduce to 

( ) ( )sinhx C k x aψ α±± = ⎡ ⎤⎣ ⎦∓ , leading to boundary conditions at x L= ±  given by 

( ) ( ) ( )coth 0L k k a L Lψ α α ψ′ ± ± − ± =⎡ ⎤⎣ ⎦  where ‘prime’ denotes x differentiation.   

In the region of sheared flow the solutions again reduce to Bessel functions: 

[ ]1/ 2
1 2( ) ( ) ( )z z C K z C I zν νψ −= +  , where as before /z kx Vω ′= − .  For the interesting 

regime corresponding to a thin shear layer we assume that 1kL ∼  and L a . Applying 

the boundary conditions then leads to the following dispersion relation. 

 
1/ 2 1/ 2

1/ 2 1/ 2

( ) ( )
det 0

( ) ( )

z z

z z

z e I z z e K z

z e I z z e K z

α α
ν ν

α α
ν ν

+ +

− −

− −
+ + + +

− −− −
− − − −

′ ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ =
′ ′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (22) 

where /z kL Vω± ′= ± −  and ‘prime’ now denotes z differentiation. 

The dispersion relation for a typical unstable case corresponding to 1/ 2ν =  is 

illustrated in Fig. 7. Note that this value of ν  is equivalent to min 0K =  so that the 

instability is a pure fluid dynamics mode, not dependent on plasma physics.  Observe that 
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the mode is unstable for a finite range of wave numbers min maxk k k< < .  The values of 

mink  and maxk  are easily found by solving the dispersion relation which reduces to the 

following simple analytic form 

 
1/ 221 1 exp( 4 )

2 4
i

V
ω κ κ

⎡ ⎤⎛ ⎞= − − −⎢ ⎥⎜ ⎟′ ⎝ ⎠⎢ ⎥⎣ ⎦
 (23) 

with kLκ = .  We find that the critical wave numbers are given by min 0k =  and 

max 0.64k ≈ .  Also, by symmetry, ( )Re 0ω = . 

As the value of ν  decreases the system remains unstable, although the two critical 

values of k  start to coalesce.  Eventually, when ν  decreases below a critical value, mink  

and maxk  overlap.  This corresponds to the marginal stability point of the system.  

Numerically, marginal stability occurs when 0ν =  at the fully coalesced value of wave 

number 0.60kL ≈ .  This result can be verified analytically by setting 0ω =  and 0ν =  in 

the dispersion relation.  The result, after a short calculation, is a transcendental equation 

for the marginal κ  that can be written as 

 
1/ 2

20

0

( ) 1 1
( ) 2 4

I
I

κ κ κ
κ

′ ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (24) 

It has a single real solution for κ  given by 0.60κ ≈  thereby confirming the numerical 

results. 

Observe that the marginal stability condition 0ν =  corresponds to 2 2
min / 4 SK V ω′= .  

As compared to the case of no flow, the value of minK  has increased from zero to a 

positive value; that is the system is more unstable.  In terms of the physical variables the 

stability condition has the form 
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2 2

2 2
0

2 1
4

θ

θ S

rp B V
p B γµ pγ ω
′ ′
+ >

+
 (25) 

The physical explanation for the increased instability is associated with the “S-like” 

shape of the velocity profile.  As is well known from fluid dynamics this can drive the 

Kelvin-Helmholtz instability.  To prevent the mode from being excited the Kadomtsev 

function, which characterizes the plasma properties, must be even more stabilizing than 

without flow.  Thus, from the point of view of the plasma the velocity shear has led to a 

decrease in stability.    

V. Cylindrical results 

The goal of this section is to determine the effect of flow shear on the MHD marginal 

stability boundaries using the full cylindrical model with realistic LDX-like profiles.  

Achieving this goal requires a combination of cylindrical numerical studies and physical 

intuition based on the simple slab results of the previous section.   

The starting point of the analysis is the specification of LDX-like equilibrium profiles.  

The pressure and density are chosen in accordance with expected experimental profiles as 

follows 

 
( ) ( )

( )

( ) max

1 1
1 1

2
1

w

w xp r p
w x

r
x

α

α

ρ ρ

⎡ ⎤ ⎡ ⎤+ −= ⎢ ⎥ ⎢ ⎥
− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞= ⎜ ⎟+⎝ ⎠

 (26) 

and are illustrated in Fig. 8a.  Here 2 2 2 2/ , / ,c w cx r r w r r= =  and the plasma exists in the 

region 1 x w≤ ≤ .  For LDX 2wr m=  and the minor radius of the coil 0.15cr m= , implying 

that 178w ≈ .  The quantity wp  is the edge pressure, which is assumed to be held fixed by 

the wall properties during all simulations.  The quantity α  is a profile parameter that 
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determines how gradually the pressure profile decays to zero far from the coil.  For a 

fixed edge pressure, high α  implies a high peak pressure and a corresponding high value 

of β .  The density decays as 21/ rρ ∝  at large distances and has the value maxρ ρ=  at 

the surface of the coil.  The 21/ r  decay accounts for the fact that flux tubes can be 

randomly exchanged when the interchange mode is excited, usually near the outer portion 

of the plasma.  Therefore, each flux tube must have the same number of particles 

implying that 21/ rρ ∝ .  In fact, Pastukhov and Chudin [23, 24] show that this scaling 

persists even during the nonlinear phase of the evolution of the interchange instability. 

Next, note that the peak pressure occurs at ( ) ( )max 1 / 1x α α= + −  and is related to the 

edge pressure by  

 ( ) ( )
( )

1

max 1 1
2 1w

wp
p w

α αα
α α

− ⎡ ⎤− +⎡ ⎤
= ⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

 (27) 

To keep the number of free parameters manageable we assume that the plasmas of 

interest have low maxp  and hence, low β .  This is consistent with the experimental 

conditions on LDX and yields results that are very insensitive to the value of wp  except 

as it appears in simple scaling relations.  The low β  assumption enters the analysis by 

allowing us to accurately approximate the magnetic field by its vacuum value.  Thus, the 

Bθ  profile is given by 

 ( ) 0
1/ 2

1
2

c

c

IB r
r xθ

µ
π

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (28) 

where cI  is the coil current. 
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The last profile of interest is that of the equilibrium flow velocity.  In the analysis that 

follows two cases are considered: 

 

( )
( )

( )( )

( )
( )

( )( )

max
2

max
21/ 2

4 1
1

1

1

VV r x w x
w

x w xVV r
xw

= − −
−

− −
=

−

 (29) 

Both profiles satisfy the no slip condition as illustrated in Fig. 8b.  The first profile 

reaches a maximum at ( )max 1 / 2x w= + , well beyond the pressure peak.  Qualitatively, 

this profile might be generated by the 2/ B×E B  drift, which peaks far out because of the 

rapidly decreasing value of B .  The second profile peaks at 1/ 2
maxx w=  which is much 

closer to the pressure maximum.  Such a profile might be generated in a beam driven 

system.  We emphasize that at present there is no detailed experimental data to motivate 

the choice of velocity profile and the two cases discussed should just be viewed as 

plausible possibilities. 

The profiles have now been specified.  The next step is to solve the cylindrical 

differential equation to determine the marginal stability boundary.  In particular, in the 

low β  limit we wish to determine the marginally stable value of the profile parameter α  

as a function of the maximum velocity maxV .  The strictest marginal α  is determined by 

numerically searching for the marginal α  at fixed k and maxV , and then repeating the 

procedure by varying k  until the lowest marginal α  is found; that is, the strictest 

marginal α  is defined as ( ) ( )max maxmin ,k marV k Vα α= ⎡ ⎤⎣ ⎦ .   Knowing ( )maxVα  it is then 

straightforward to calculate the increase or decrease in critical β  as a function of flow 

velocity.  The critical figure of merit is defined as 
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 ( )
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where 
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 (31) 

and maxβ  is the largest value of β  that is stable (the value corresponding to the marginal 

α ). The last approximate expression corresponds to the interesting limit 1w .  For our 

profiles it follows that  
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(32) 

Here, ( )0 max 0Vα α= =  is the marginal value for zero flow and ( )maxVα α=  is the 

marginal value for finite flow.  Observe that for 1w  even a small increase in the 

marginal α  due to flow can substantially increase the critical β  since 0wα αη −∝ . 

The final preparatory step is to calculate the explicit conditions for marginal stability 

for the no-flow case max 0V = .  This will serve as the reference case when analyzing 

marginal stability for the two different velocity profiles.  For max 0V = , marginal stability 

in the cylindrical case occurs when k → ∞  and requires that the Kadomtsev function be 
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positive for all r .  In other words marginal stability occurs when ( )0min , 0r K r α =⎡ ⎤⎣ ⎦ .   

For the profiles under consideration this condition reduces to 

 
( ) ( )

( )
0 0

2

1 1
min 1 0

1x

x x
x

α α
γ

⎧ ⎫+ − −⎡ ⎤⎪ ⎪⎣ ⎦ + =⎨ ⎬−⎪ ⎪⎩ ⎭
 (33) 

The function in the brackets is plotted as a function of x  in Fig. 9 and is labeled “ 0K ”.  

Observe that the function is a monotonically decreasing function of x  implying that the 

most unstable point is x w= .  The marginal value of α  for the reference case is thus 

given by 

 0
1 1 1

1
w w

w w
α γ γ+ +⎛ ⎞ ⎛ ⎞= + ≈ +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (34) 

For 5 / 3γ =  and ( )22 / 0.15w =  we find that 0 2.687α = . 

We now turn to the cylindrical stability results for the two velocity profiles of 

interest. 

A. First velocity profile 

Some insight into the effect of the first velocity profile (the one that peaks far out) can 

be obtained by noting the following points.  First, since 0V ′′ <  everywhere, there is no 

“S-like” behavior and the Kelvin-Helmholtz instability, as described by slab model (C), 

should not be excited.  Second, over the major part of the profile the velocity shear is 

non-zero and in these regions, slab model (A) should apply, implying increased stability.  

Third, near the peak of the velocity, 0V ′ =  by definition, and in this region slab model 

(B) should apply in which case there should be very little change in stability.  Fourth, the 

marginal stability criteria for slab models (A) and (B) just happen to coincide when 

0V ′ = .  The fifth and critical point is that when the velocity peaks far out (at 
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max / 2x w≈ ), the ratio of /xp p′  is very nearly a constant over the entire region 

maxx x w< < .  Therefore, since /xp p′  does not change, the marginal α  obtained by 

setting ( )max, 0K xα =  is almost identical to the static value derived from ( )0 0, 0K wα = .   

The overall stability picture can be understood by examining the curve of ( )1 , ,K S xα  

vs. x  also illustrated in Fig. 9.  This curve corresponds to the local velocity shear 

stabilized Kadomtsev criterion given by Eq. (16), plotted for the case 0α α=  and 1S = .  

Here, S  is an equivalent Mach number defined as a ratio of the maximum flow speed to 

the maximum sound speed of the static marginally stable plasma. The sound speed of the 

static plasma reaches it’s maximum at ( )0 0/ 2x α α= −  and has the value 

 ( ) ( )
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( )0 0

00

1/ 22
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max 1max 1

max 0

2 1
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α α
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= = ⎢ ⎥

−−⎢ ⎥⎣ ⎦
 (35) 

Thus, the parameter S is defined by 
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 (36) 

Observe, that as expected 1 0K K≥ , the equality occurring at the point max / 2x w≈  

where 0V ′ = .  Also, 1K  has a minimum very near maxx x= .  Technically, ( )1 0 max, ,K S xα  

is greater than ( )0 0, 0K wα =  implying that with flow, α  can be raised above the value 

0α  until marginal stability is reached: ( ) ( )1 max) 0 0, , , 0K S x K wα α= = .  However, because 

of the flatness of 0K , the gap ( ) ( )0 0 0 0 max, ,K w K xα α−  is so small that the increase in α  

is virtually negligible.   
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The exact marginally stable α  as a function of the velocity shear S , as predicted by 

the local slab model (A), is easily obtained by finding the value of Ax x=  that minimizes 

( )1 , ,K S xα : 
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 (37) 

 

and then setting ( )1 , , 0AK S xα =  to obtain ( )Sα α= .  This curve is plotted in Fig. 10.  

Note that α  increases with S  as expected.  Most of the increase occurs for small S  as 

the minimum point of 1K  moves from the plasma edge, when 0S = , to its saturated 

value when the minimum coincides with the peak of the velocity.  In any event the total 

increase is very small, raising α  from 2.687 to 2.708.  This produces a very modest gain 

in β  given by 1.05η = . 

The net result of this intuition is that the marginally stable values of α  as predicted 

by slab models (A) and (B) are essentially identical and equal to the no-flow value 0α .  

The final conclusion is that the gain factor 1η ≈ (i.e. there is virtually no gain in β  due to 

a sheared velocity flow that peaks far beyond the pressure maximum). 

This intuition has been tested by numerically solving the full cylindrical eigenvalue 

equation for the profiles of interest using the LDX parameters and following the 

procedure described earlier.  The results are similar to those just described.  The peak of 

the eigenfunction moves from the plasma edge to the point where 0V ′ =  as S  increases.  

The eigenfunction for large k  is highly localized in space.  The marginal α  is very close 
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to 0α .  Numerical inaccuracies associated with the use of finite rather than infinite k  

plus the high localization of the mode make it difficult to precisely calculate the very 

small differences in the marginal α  as S  varies.  However, since the differences are very 

small it is not of great interest to pursue the numerical studies for the first velocity profile 

in any further detail. 

B. Second velocity profile 

Consider now the second velocity profile, which peaks much closer to the pressure 

maximum, at 1/ 2
maxx x w= = .  This profile has a constant velocity shear over almost the 

entire region of unfavorable magnetic curvature and, consequently, we might expect to 

see an improvement in stability.  This is indeed the case as can be intuitively understood 

by comparing the similarities and differences with respect to the first profile.  The 

similarities are as follows.  Again 0V ′′ <  everywhere so no Kelvin-Helmholtz instability 

is expected.  Because of the large constant shear region, stability should be most similar 

to slab model (A).  There is a small region close to the plasma where 0V ′ =  and in this 

region slab model (B) should apply.  The stability criteria given by slab models (A) and 

(B) coincide in the region where 0V ′ = .   

The critical difference is that the region where the criteria overlap is much closer to 

the peak pressure for the second velocity profile.  In this region the ratio /rp p′  is 

substantially different from its asymptotic value as r → ∞ .   The implication is that at the 

overlap point the local stability criterion is satisfied by a substantial margin.  Hence, we 

expect that it should be possible to raise α  by a finite amount before reaching the 

marginal stability point.   
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This idea can be understood by examining the local stability curve corresponding to 

case (A) as a function of position.  The curve is labeled [ ]2 2 , ,K K S xα=  and is also 

illustrated in Fig.9  for the parameters 0 , 1Sα α= = .  Observe that 2K  coincides with 0K  

at the point where 2 0V ′ =  and has a minimum at Bx x=  slightly further out.  It is clear 

from the curve that at this point ( ) ( )2min 2 0 0 0, , ,BK K S x K wα α= > .  Since raising α  

lowers curve 2K  when α  is raised by a sufficient amount, then 

( ) ( )2 0 0, , , 0BK S x K wα α= =  and marginal stability has been achieved.  The quantitative 

prediction of the marginal stability boundary ( )Sα α=  resulting from slab model (A) is 

easily obtained by solving 
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 (38) 

The curve of ( )Sα α=  is illustrated as the solid curve in Fig. 11.  We see that α  

increases with S  and in the limit S → ∞  saturates at the value 2.954 (for the given value 

of w ).  As a specific example, for 1S =  the marginal α  has increased to 2.83, a 

substantial increase over the no flow limit.  For this value of α  the gain in β  is finite: 

1.56η =  The entire curve of η  vs. S  is shown as the solid curve in Fig. 12. 

The overall insight from the slab analysis is that for velocity profiles peaked near the 

pressure maximum, the stabilizing effects of shear are substantial leading to finite 

increases in the marginally stable β . 
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This intuition has been tested by solving the cylindrical eigenvalue equation for the 

second velocity profile.  Overall, the results are qualitatively similar although, as 

discussed shortly, there is one important effect that produces finite quantitative changes 

in the marginal stability boundary.   

The first indication that shear provides a stabilizing effect is shown in Fig. 13 where 

we plot normalized growth rate ( )max/i S cV rω  vs. S  for the unstable case 

1.5, 2.95ckr α= =  and maxSV given by Eq.(35).  As has been found by several other 

authors [12, 13, 14], we see that the growth rate decreases as the velocity shear increases.   

A second set of simulations illustrates normalized growth rate vs. wave number for 

various values of S  at a fixed, unstable 2.95α = (See Fig. 14). Note that the growth rate 

decreases as the velocity shear increases.  Interestingly, the fastest growth rates occur at 

very large ckr .  The growth rate initially increases with ckr , then temporarily decreases 

and eventually starts to grow at large ckr  again. The explanation may lie in difference 

between the cylindrical and slab geometry. The interchange mode requires the highest 

possible wavenumber, while the plasma with velocity shear is most unstable for finite 

wavenumber. The competition between these two different effects is responsible for the 

behavior of the growthrate.  This behavior has similarities with the growthrate observed 

by Guzdar et. al [16], where the competing effects were due to the KH and Rayleigh-

Taylor modes.  

The slab model also suggests that large ckr  should be completely stabilized by 

velocity shear above a critical value ( )c crit
kr  but this behavior is not observed in the 

cylindrical caseThe reason is again associated with finite cylindrical effects that spread 
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the eigenfunction over a larger portion of the profile when the plasma is unstable.  The 

mode becomes localized only for large ckr  near marginal stability.  

The difference in ckr  scaling relations between the slab and cylinder lead to 

quantitative changes in the marginal stability boundary for the following reason.  

Intuitively, we expect the slab model to be a reasonably accurate approximation to the 

cylinder when the modes are localized, which typically occurs for ckr → ∞ .  However, 

the slab model predicts that the most unstable wave numbers near marginal stability 

correspond to 0ckr → .  This dichotomy can be seen by re-examining Fig. 11.  

Superimposed on the slab stability predictions are the cylindrical marginal stability 

results for various ckr .  For large ckr  the cylindrical and slab results are quite similar; as 

stated, in this regime the slab model is a good approximation.  However, as ckr  decreases 

the marginal stability boundary is lowered (i.e. becomes more restrictive), finally 

reaching a saturated value when 0ckr → .  For a given value of S  the gain in α  due to 

shear is approximately halved as ckr  decreases from infinity to zero.  The gain in β  due 

to velocity shear is also plotted in Fig. 12 for the actual cylindrical marginal stability 

boundary corresponding to 0ckr → .  We see that the cylindrical β  gain is more modest 

as compared to the slab prediction. 

VI. Conclusions 

The effect of velocity shear on the MHD interchange stability in a hardcore Z-pinch 

has been investigated in both slab and cylindrical geometries.  The basic question is to 

determine whether velocity shear improves or worsens stability as compared to the static 

case.  Our slab geometry results indicate that all options are possible, depending upon the 
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precise shape of the velocity profile.  A constant velocity shear improves stability.  A 

peaked velocity profile has little effect on stability.  A counter-streaming S-shaped 

velocity profile worsens stability. 

The slab results have been used to interpret numerical simulations of a cylindrical 

hardcore Z-pinch (modeling LDX) with a velocity profile corresponding to no-slip 

boundary conditions; i.e. the velocity is zero at each boundary and peaks in the middle.  

When the velocity profile peaks far from the pressure maximum, then the constant shear 

and peaked velocity criteria overlap.  The net result is that there is almost no change in 

the marginal stability boundary due to the flow.  On the other hand, when the velocity 

peaks near the pressure maximum, the constant shear slab model is the best 

approximation.  There is a finite improvement in stability due to velocity shear, although 

quantitatively the cylindrical gains are more modest than the slab predictions. 
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