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ABSTRACT

We consider the equilibrium and stability of Marfes. We demonstrate that important

aspects of the 2-dimensional problem can be illustrated by a 1-dimensional treatment. A

stability analysis indicates that Marfe formation requires low temperature, high impurity

content and low cross field transport. Additionally, Marfes tend to form on flux surfaces

that contain an x-point. We observe that the transition to a Marfe-like solution can result

from a fluctuation-induced jump from a neighboring constant temperature solution.
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I. Introduction

Marfes are radiation condensation instabilities that appear in tokamaks as a density

limit is approached [1-5]. They are manifested as dense, cool regions of radiating plasma

that form a poloidally localized and toroidally symmetric ring usually located near an outer

flux surface on the high field side of the torus. Recent observations indicate that Marfes

tend to locate themselves near to the x-point [6-7] in a diverted tokamak as the edge is

cooled and densified.

A number of numerical and analytic investigations of this phenomenon have been

performed [8-12]. The tokamak thermal equilibrium equations are two dimensional, i.e.

in the perpendicular and along-the-field-line co-ordinates (the perpendicular coordinate is

dominantly the flux co-ordinate). McCarthy and Drake [10] replaced the cross-field heat

flux by a constant heat source and solved the time dependent non-linear 1-dimensional

along-the-field-line equation. They demonstrated a transition from an unstable isothermal

solution into a Marfe-like solution. The two dimensional equations have also been studied

[13-14].

In this work we make a more correct (albeit still simplistic) approximation to the cross

field heat flux. We observe that the important behavior is along-the-field-line and that we

can simplify the problem mathematically by differencing the cross-field diffusion term.

This reduces the 2-dimensional partial differential equation to a set of coupled non-linear

1-dimensional ordinary differential equations. We can then solve the resulting non-linear

along-the-field-line equations for equilibrium. We consider first the properties of a single

ordinary differential equation which models the along-the-field-line heat flow in the vicinity

of the x-point. We then consider a set of two coupled ordinary differential equations which

model respectively the heat flow in the separatrix and scrape-off layer flux surfaces.

Examination of a single along-the-field-line equation reveals several stable solutions

which may be divided into two classes: 1) those that exhibit a constant temperature along

the field line and 2) those in which temperature varies along the field line, i.e. exhibit a

Marfe-like character. The constant temperature equilibria will make a transition into a
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Marfe if they become linearly unstable. Additionally, temperature fluctuations can cause

a stable constant temperature equilibrium to "jump" into the Marfe-like solution when

these two equilibria approach each other.

We find that this model for the transition can explain a number of observed phenom-

ena. Formation of a stable Marfe-like solution can occur when the temperature and the

cross field transport are sufficiently low and the impurity content is sufficiently high. The

model is consistent with the tendency of an x-point to facilitate Marfe formation.

II. Basic Equations

The theory of Marfes is based on the fluid equations [15] for density (n), temperature

(T) and velocity vj1. Assuming Tj = Te = T we will examine the equilibria of the following

equations:

a OT a 0 T
--- + - -== nencL(T). (la)

ass a8x

neT = p(x) (1b)

with s and x the respective along-the-field and cross-field directions, r.11 and t.± the parallel

and perpendicular thermal conductivities respectively, and L(T) the radiation function. We

imagine that the field line length from outside to inside of the torus is L (- qaR with qa

the safety factor near the plasma edge) and impose the symmetry boundary condition

aT(x, 0) T(x, L) (2)
as as

If we consider cylindrical co-ordinates we can use r as the radial (flux) coordinate,

0 as the poloidal co-ordinate and 0 as the toroidal co-ordinate. In this approximation

BO/BO = tan a with a the field line pitch angle and L ~ 7ra/sin a with . the flux tube

ellipticity and -ran approximately half of the flux tube circumference at the Marfe location.

In the poloidal plane Eq. (1) becomes
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1 (nl1 sin2 a + kiCOS2 a) aT + aKILzO = nenCL(T) (3)
r2(00 060 O)r i =r

where k_ is the perpendicular transport within the flux tube. Transport perpendicular to

the field occurs both across (,i-) and within the flux tubes(k±). Generally . 11sin2 a >>

kIcos2a and we can ignore the kj term. In the vicinity of an x-point, however, sin a ~ 0

and the kj term cannot be ignored.

III.A. Equilibrium

Consider first radial equilibrium. If initially the equilibrium plasma is Marfe-free

(OT/,9 ~ 0) there are two classes of radial equilibria: 1) The edge is sufficiently hot that

low-Z impurities (C, 0, etc.) are fully stripped and do not radiate or b) low-Z impurity

radiation dominates the edge power balance and prevents the edge temperature from rising

above a level required to strip these impurities. Analysis of Eq. (1) without the parallel

term in fact yield these two solutions [8,11,12]. In general a second equation for p(x) must

be solved consistently with Eq. (la).

A Marfe may occur near the plasma edge in a layer of width 26 bounded by flux tubes

with mean radii respectively of r, and rb, i.e. rb - ra ~ 26. The flux tubes at r, and rb are

assumed to be at the respective temperatures T and Tb. For 6 << r, rb we can simplify

Eq. (1) by differencing the cross-field conduction term as follows:

02T (T+Tb -- 2T) (T-2T)
Ox 2  62 62 (4)

where for simplicity it is assumed that Tb << Ta. We will first consider a single ordinary

differential equation and afterwards consider two coupled ordinary differential equations.

Eq. (4) retains the important effect that if the plasma within the layer of interest (in which

a Marfe can occur) heats up, the cross-field power source into the layer decreases and visa

versa. Furthermore, in a clean plasma without significant radiation cooling, the equilibrium

is initially described by the non-radiating edge solution which requires K±02T/0x 2 ~ 0
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and Eq. (4) permits this result (when T = T./2). We will therefore initially consider the

following equation in our studies:

_ (Ta -2T )
(T, 2 T + n nenCL(T) (5a)

T,(0) = T,(L) = 0. (5b)

and neT = po =constant. The subscripts indicate partial derivatives. We note that -11

is generally a function of temperature (classically i1 = i=IIT'/ 2 ). Following [10] we will

approximate the radiation function by

L(T) = LOT + Ta. (6)

Tad represents the temperature at the peak of the radiation curve, i.e. for Carbon in local

thermodynamic equilibrium Tad = 8 eV. The details of this approximation do not effect

the results and a more accurate form of the radiation function can be easily included. We

will take LO = 1.2 x 1031 WM3 , Wil = 1.29 x 1022 m-'s-leV-S/2 and KI = 3n, m- 1 s~1.

Solution by Method of Pseudo-Potential

Equation (5) is a non-linear ordinary differential equation. It can be easily solved nu-

merically and possesses multiple solutions. Valuable insight into the number and character

of the solutions can be gained through the method of pseudo-potentials.

To apply this method we define the pseudo-potential by

O(T) - [nencL(T') - * (T./T' - 2) dT'. (7)

where nex± -= t.. To include a temperature dependence, K11 oc T 5 /2 we could perform a

change of variables T = T/ 2 to eliminate the temperature dependence from the K11 term.

5



This change of variables would distort the pseudo-potential without changing the relative

positions of the maxima which determines the character of the solutions. For the present

we ignore the temperature dependence of .1 and obtain from Eq. (5)

0 2 T 
(8)

'_IIs2 9T'

If we consider s as the pseudo-time co-ordinate and T as the pseudo-spacial co-ordinate

Eq. (8) describes the motion of a ball of mass 1 on a potential hill described by O(T).

(The speed of the ball is OT/Os = T,). The ball will begin at some position Tinit with

zero speed and come back to a stop at time=L at position Tjinai. The extrema of the

pseudo-potential, 0, give rise to constant temperature (along-the-field-line) solutions. We

will see that a result of the unusual boundary conditions is that the constant temperature

equilibrium associated w*th the ball at a maxima is stable and equilibria at potential

minima are unstable.

Fig. 1 displays a family of pseudo-potentials, drawn for a) low Carbon radiation, b)

moderate radiation. The three extrema indicate (i) a constant (along-a field-line) solution

at a warm edge temperature (T = T3 ~ T/ 2 ), (ii) a radiation burnout solution T =

Ti ,< T,.d which corresponds to a detached plasma state, (iii) a solution having T =

T2 > T,. .

Consider the higher radiation pseudo potential curve displayed in Fig 1. In addition

to the three constant temperature solutions just pointed out there will be a second class

of solutions, the Marfe-like solutions such as shown in Fig. 2. For these solutions the

pseudo-position varies with pseudo-time, or in other words T varies with s. An acceptable

solution requires that a ball set at position T = Ti., to the left of and close to T3 will

roll down the potential hill and stop in pseudo-time t=L at T = Tjinai. This solution is

shown in Fig. 2. Higher order solutions will also exist for a trajectory that will execute

a finite number of passes through the position T2 and have starting and ending positions

T fe p < T < Tita.r

If the plasma is initially at the stable warm edge equilibrium solution T=T3 the system

6



will make a transition to a new equilibrium when this solution is lost (referring to Fig 1

the warm edge temperature solution solution T = T3 will evolve into the detached solution

T = T1 when the maxima at T = T3 disappears due to increased radiation or reduced

edge temperature.) A more likely evolution path involves "jumping" between T = T3

and a neighboring Marfe-like equilibrium brought about by edge temperature fluctuations

[16-19]. The closest neighboring equilibrium will always be the lowest order Marfe.

Let us examine this possibility more closely. The maximum temperature point for

the Marfe-like solution will approach T3 as the field line length (L ~ qgR) increases. The

two solutions will also approach each other as the warm temperature boundary condition

T = Ta ~ 2T3 decreases, either due to an decrease of heating power into the core of the

discharge or due to an increase of edge ion density.

In the vicinity of the x-point L -- oo and the high temperature end of the Marfe

solution approaches the constant temperature solution, T = T 3 provided that 4(T1 ) >

O(T 3 ). Therefore a transition can occur relatively easily at an x-point when the field line

length becomes long. (Near the x-point, however, the cross field transport within the flux

tube will dominate the along-the-field-line transport and therefore the thermal transport

within the flux tube will not completely disappear as the x-point is approached.)

III.B. Stability of Marfe Equations

Returning to Eq. (8a) we now examine the stability of the Marfe-like solutions for

T(s). If we perturb Eq. (8) (T -* T + 6T) we obtain for 6T

8 89&T d2q4
-y8T = anl 96 + dO6T (9)

,S Os dT 2

with -y the growth rate. The boundary conditions on 8T are ST, (0) = 6T, (L) = 0 with

bT, = aT/Os. We can obtain a quadratic form by multiplying by 6T and integrating

along the length of the field line:

7



fL -L + L10

,fL 8T 2 ds = - Ly K11T,2ds + L OTT(T)bT 2ds. (10)
0 f0 f

Eq. (10) can be shown to be maximizing and therefore and if a trial function is found

that yields -Y > 0 this provides a sufficient condition for instability. Notice that the term

containing tg is always stabilizing whereas the term containing OTT can be either stabi-

lizing or destabilizing. Recalling the form of the pseudo-potential (Fig. 1) the potential

has negative OTT (stabilizing) regions in the vicinity of T1 and T3 and positive OTT in the

vicinity of T 2 .

Consider first the constant temperature solutions that occur at the extrema of the

pseudo potential. Since $TT(T) is constant for these solutions it can be removed from the

integral in Eq. (10). At the maxima OTT < 0 and therefore these solutions, (T = T1 or T3

in Fig. 1) are stable. Consider next a potential minimum point (T = T2 in Fig. 1). If we

take as a trial function ST(s) = constant the stabilizing n,| term is eliminated and since

OTT > 0 we obtain an instability. (Since Eq. (10) is a maximizing energy principle any trial

function that leads to instability provides a sufficient condition for instability.) Therefore

we find the somewhat counter intuitive result that constant temperature solutions at the

maxima of the pseudo-potential are stable while those at the minima are unstable.

Consider next marfe-like equilibria. We again consider a trial function bT(s) =

constant to eliminate the stabilizing KiI term. We then obtain a sufficient condition for

instability

47TTds > 0 (11a)

while a necessary condition for stability will be

o ds < 0. (11b)

Referring to the potential in Fig. 1 we observe, for example, that a Marfe-like solution that

sits entirely in the region where OTT > 0 would be unstable. The spacial dependence of

8



$TT(T) however depends on the equilibrium solution for T(s). Furthermore, since -OTT

is the temperature derivative of the cross field and radiation function (RHS Eq. 5a) we see

that stability requires that the field line average of the slope of the cross field and radiation

function be positive.

From the pseudo-potential picture in which T corresponds to pseudo-position and S

to pseudo-time, a ball started off near a potential maxima (OTT > 0) will spend a lot of

time near the maxima. The edge temperature, Ta (T3 ~ Ta/2) must be sufficiently low

for the ball to stop at time t=L. Thus a stable Marfe-like solution requires that the high

temperature point be close to the maxima at T = T3 so that a large region of the solution

lies in the negative OTT region near T3 .

A solution with T < T3 also requires that the pseudo-potential maxima satisfy the

condition q(T 1 ) > O(T 3 ). This imposes a necessary condition on the radiation term

T ennCL(T)dT > J (KLT ).T.ds ~ ney (Ta - 2T)dT. (12)

Thus a stable Marfe-like equilibria with T < T3 can occur as the impurity content, nc is

increased or as the edge temperature, Ta is reduced. The Marfe formation is also inhibited

by an increase in xI.

Further insight into the stability of the equilibria can be gained if we notice that OTT

has a maximum in the vicinity of T2 . We can then obtain a second necessary condition for

stability

fL L

o t5ds > OTT f T 2 ds. (13)

If we consider, for example, a trial function that is localized in the destabilizing region (in

which OTT > 0) of width A (T , ~ bT/A) Eq. (13) approximately gives
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Noting that A < L/2, we conclude that formation of a stable Marfe requires a sufficiently

large parallel thermal conductivity, ,r.

Finally we note that an "inverse marfe" equilibrium can be a stable solution in the

low radiation limit (q(T 1 ) < #(T3 )). Referring to Fig. 1; for this solution we would start

the ball off close to and to the right of T = T1. The resulting solution for temperature

would be close to T1 along a large part of the field line length and only rise rapidly close

at the other end of the field line (at the outside of the torus). Such equilibria would have

a radiating region of much larger extent than an ordinary Marfe. Observation of these

structures have not been reported in the literature.

If we consider that in the start up sequence of a tokamak, initially the plasma edge is

warm it will be at the equilibrium point temperature T = T3 . If the edge is then cooled

(due to the injection of gas or impurities) there will be a point when a stable Marfe-like

solution with T(L) < T3 will be produced and edge temperature fluctuations can cause the

edge to "jump" into the Marfe equilibrium. Sufficient cooling can eliminate the pseudo-

potential maxima at T = T3 and leave only the radiation collapse solution, T = T which

would be manifested as a detached plasma.

III.C. Two Layer Model

To consider the interaction between the flux layer near the x-point and the adjoining

scrape-off layer we consider two coupled equations for T1 and T2 which model these two

respective flux layers:

a OTi _ 1 (T. + T2 - 2T 1) + nncL(Ti) (14a)
as a s ~ 2 +eo(1 1a

- =T2  (T 1 + Tedge 2T 2)+ nencL(T2 ) + Pecomb + n2T2 (14b)
( Os 82 ds

with boundary conditions aT1/Os(s 0) = 0T2 /Os(s = 0) = aTi/Os(s = L) = OT 2 /Os(s =

L)=0.
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In the x-point layer (Eq. 14a) C takes account of the relatively long field line length

in the vicinity of the x-point (which effectively reduces parallel thermal conduction). The

scrape off layer model equation (14b) contains a term for recombination and a flow term.

These equations can be easily solved.

From the single layer problem discussed above we can assume that in each layer

individually a radiation collapse is facilitated by a high impurity content, low temperature

and low xI. In the layer containing the x-point it is also facilitated by a reduced thermal

conductivity along-the-field-line. The two layers interact and a thermal collapse in one

layer will reduce the cross field heat flow into the second layer. Thus the thermal collapse

will tend to spread toward the edge. If the outer layers do not contain much pressure the

observed radiation (which is proportional to p2 ) will appear to decrease in the low pressure

layer. A typical solution is shown in Fig. 3.

Recombination of the hydrogenic species becomes important when the temperature

falls below 1 eV. It can be included as an additional term in the radiation function.

Stability of 2-Dimensional Equilibria

We can rewrite Eq. (la) as

(t- 1T,), + (KI(x)T.). = fjmpn(x)L(T) p2 R(T) (15)

with fi m, the impurity fraction and ne(x) p(x)/T, i.e. pressure is constant along a field

line and varies across flux surfaces. Eq. (15) will yield solutions similar to those discussed

in the previous section. The stability of the solutions can be obtained from the perturbed

form of Eq. (15)

-yeT = (njj8T,), + (K(x)bT:); - p 2 (x)RT5T. (16)
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with boundary conditions 6T(a) = ST(b) = 0 at the radial boundaries of the flux layers

and 6T,(0) = 6T,(L) = 0 at either ends of the field lines. Integrating Eq (16) in s and x

we obtain

JJY6Tdsdx = - dsdx[nj6TS + KIST. + p2RTbT2 ] (17)

As is well known [20-21] the negative slope region of the radiation function can drive

instability while thermal conductivity is stabilizing. RT(T) is a function of space through

the equilibrium relation. Eq. (17) illuminates a result of the simpler 1-D stability criterion

(Eq. 11): if we choose a perturbation which zeroes the parallel transport, stability is

determined by a competition between cross-field transport and radiation in the unstable

region of the radiation function.

An interesting special case results when pressure is constant across the flux tubes, i.e.

p(x) = po and i is independent of x. (We are already assuming that pressure is constant

along field lines). Taking this limit and assuming T, does not change sign (T., < 0) we can

take the x-derivative of Eq. (15) to obtain RT and substitute RT back into Eq. (17) to

obtain

SJY6T 2dsdx =J- dsdx[nj(bT, - T; ST +T .- 72 (18)

Thus when pressure is constant and the radial temperature gradient does not change sign

all equilibria are stable. In general the radial dependence of tj- ('j± ~ ne(x)x±) and p(x)

adds additional terms to Eq. (18) and Eq. (17) must be considered to evaluate stability.

The more stable nature of 2-dimensional equilibria indicates that an unstable 1-dimensional

equilibrium may be stabilized when it is radially coupled to other more stable regions.
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IV. Conclusions

By differencing the cross field conduction term we have reduced the thermal con-

ductivity equation to one dimension (along-the-field-line) in a manner that still contains

information about cross field transport. We observe that a stable Marfe-like equilibrium

can form when the edge is cooled or when the edge impurity content increases sufficiently

. An increase in X will inhibit Marfe formation. Although both the constant tempera-

ture and the Marfe solutions are thermally stable, temperature fluctuations can cause a

transition from one to the other. Furthermore a necessary condition for the stability of

the Marfe (Eq. 11b) requires that the temperature remain close to the warm constant

temperature equilibrium solution throughout most of the field line length and then fall

quickly into the strongly radiating temperature range. This condition eliminates a gradual

temperature drop solution which may be more desirable for spreading the radiation energy

in some divertor scenarios.

Two types of Marfe solutions are observed: In the low impurity concentration case

q(Ti) > q(T 3 ) and the Marfe forms in the cool end of the temperature range with T, -T <<

T3. In the high impurity concentration case O(T 1) < q(T 3 ) the Marfe forms at the warm

end of the temperature range with T, << T < T3. The latter case represents the Marfe

solution that can most easily transition from the warm constant temperature solution.

We have also approximated the 2-D thermal diffusion equation with coupled 1-D

equations. An examination of the stability of the 2-D fluid equations indicates that per-

pendicular coupling can enhance the stability. In the special case of constant pressure

and when the cross flux temperature gradient does not change sign we have seen that all

equilibria are stable.

The approach taken in this study illustrates the qualitative features of edge/scrape-off

layer phenomena. More detailed calculations can be obtained from two dimensional codes

[22-24]. We observe that because multiple solutions exist simulation codes can miss the

correct solution. Additionally although time dependent codes can follow the evolution

of unstable to stable equilibria they cannot predict jumps between neighboring stable
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solutions.

Although in principle Marfes would be avoided in sufficiently pure hydrogenic plasmas

only small fractions of low Z impurities are required for their formation. It therefore

appears unlikely that a strong cooling of the plasma edge (i.e. to form a radiative divertor)

can occur without the formation of a Marfe. In principle a tokamak reactor could take

advantage of this tendency by using an x-point Marfe to radiate a significant fraction of

the power leaving the plasma. In a double null (symmetric up/down) divertor it may

be possible to create two Marfes (above and below the plasma) which would increase the

power radiated and distribute it more evenly on the reactor first wall.
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Figure Captions:

FIG. 1. Typical pseudo-potential curves, 0 vs. T for a) low impurity (Carbon) content

and b) moderate impurity content.

FIG. 2. Marfe-like equilibrium that results from the high radiation pseudo potential shown

in Fig 1.

FIG. 3. Two layer solution showing a Marfe that extends in both the x-point and scrape-

off layers.
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