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Abstract

The flux jump stability characteristics of an edge cooled tape superconductor are

analyzed. Two simple cases (no stabilizer, perfect stabilizer) are considered to establish

the lower and upper bounds of the stable operating space. The generalized case is then

solved in the interesting limit where the tape thickness is small compared to its width and

compared to the one dimensional condition of Hart. The 2-D analysis indicates that finite

thermal diffusion in the superconductor can play a significant role for wold < 100, where

wo is the half width of the tape and d is the thickness of the superconductor.

Introduction

The penetration of magnetic flux into a superconductor is a dissipative process. As

flux penetrates a superconductor, heat is released, increasing the local superconductor

temperature and reducing the critical current density, Jmax,,. In a Type II superconductor,

the ability to shield magnetic field is proportional to Jma,. Thus, a decrease in Jma

leads to further flux penetration, creating a positive feedback system. If the feedback is

larger than the ability of the superconductor to disperse heat, the perturbation grows and

catastrophic (unstable) flux jumping occurs.

When a component of magnetic field is normal to the wide face of a tape supercon-

ductor, self-stabilization is particularly difficult and dynamic stabilization is necessary.

There are two options for the geometry of a dynamically stabilized tape conductor: face

cooled and edge cooled (Fig. 1). Although face cooling can be quite stable, it has serious
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drawbacks for large, high field, magnet systems. As coolant is required for each thickness

of superconductor, a stack of conductors can be stabilized only if spacers are provided to

allow coolant flow between each layer. Furthermore, if there is any component of mag-

netic field in the plane of the tape normal to the direction of current flow, then there is a

Lorentz force normal to the face of the tape. This force must be transferred to a structure

at the edges of the tape through shear, through spacers, or through a structural membrane

that provides a load path from the face of the tape to external structure. A structural

membrane usually provides the best mechanical support, although it reduces the wetted

perimeter of the conductor and thus the stability. Even under the best conditions face

cooling is not very desirable in high field magnets because of the structural requirements.

In contrast edge cooling offers substantial mechanical advantages. However, it is more

susceptible to instability than face cooling. With high field magnets as the ultimate goal,

it thus makes sense to analyze the stability of edge cooled magnets in realistic geometries

to accurately predict the design boundaries for safe operation. That is the goal of the

present work.

In reviewing the literature, we note that the theory of flux jump stability has received

considerable attention in the past. 1 ~9 Simple one dimensional isothermal and adiabatic

models have been investigated as well as sophisticated two dimensional composite models.

An excellent review of the subject has been given by Wilson.9 Our mathematical analysis is

similar to the two dimensional studies of Kremlev et al. 8 The main difference is that in our

studies the superconductor and stabilizer must be treated as separate regions. Specifically,

Kremlev et al use a cross section averaged relation between E and J, which ultimately leads

to a single region description of the "averaged" material. Since their interests are primarily

in composites with nearly uniform current density over the filament cross sections, this is

indeed a reasonable approximation. However, our interest is focussed on tape wound

magnets where the thermal gradients across the superconductor play a major role. Thus,

it is cricital to treat the conductor and stabilizer regions separately.

In the present work, the linearized stability of an edge cooled tape is investigated

in a two dimensional, multi-region geometry by means of an expansion in the ratio of
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tape thickness to width. Included in the analysis is a discussion of two limiting cases

corresponding to (1) no stabilizer and (2) perfect stabilizer. This provides lower and

upper stability bounds for the general two dimensional case. A simple nonlinear theory is

also presented demonstrating the behavior in the vicinity of the somewhat singular linear

stability boundary. The results reduce to previously derived boundaries in the appropriate

limits. The most interesting new result is the discovery that finite thermal diffusion in the

superconductor can play an important role when wo/d < 100 where wo is the half width of

the tape and d is the thickness of the superconductor. This effect leads to a more stringent

stability boundary than previously predicted.

General equations

The general equations governing the flux jump instability are Maxwell's equation and

the heat equation

V xE =
at

V x B = pOJ (1)

aT
C- =V.(VT)+E.J.

at

Consider a two dimensional (x,y) geometry. Substituting the vector potential A = A(x, y, t)ez

for the magnetic and electric fields

B = VA x e. (2)

E = ez (3)
at

one obtains
aT 8

C - V T-J- (4)at at

V2 A = -PoJ. (5)

For the superconductor J = J(T, VAI) while for the stabilizer J = -(1/)OA/Ot where

? is the resistivity. In the analysis, the dependence of J on IVAI is neglected relative
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to the dependence upon T when solving Eqs. (4) and (5) in the superconductor; that is

J(T, IVAJ) J(T). For a superconductor operating at an equilibrium temperature To, J

is modeled as

J(T) Jc(1 - TTc) T > To (6)
Jc(1 - To/T) T < To

as shown in Fig. 2. If the temperature increases (e.g. due to flux penetration) then J

decreases. If T decreases during operation, however, J does not increase and flux is not

expelled from the superconductor. This asymmetric response is crucial in determining the

stability boundaries.

Following Bean's critical state model 2 it is assumed that in steady state (1) J = 0 in

the stabilizer and (2) J = J(To) or J = 0 in the superconductor; only two values of J are

allowed in the superconductor. See Fig. 3a. Note that the division between the two regions

requires a complicated "free boundary" analysis. In principle this surface is determined by

simultaneously requiring A and n- VA to vanish on the boundary. To simplify the analysis,

a quasi-one-dimensional apprcDcimation is made but only for the steady state solution. The

dynamics are treated two dimensionally. The approximate steady state model is illustrated

in Fig. 3b. The main difference between the solutions is the appearance of small steady

state surface currents along the stabilizer-superconductor interface. These make minor

modifications to the steady state solution and have a negligible impact on the dynamics.

Hereafter, the stabilized superconductor analysis is treated as the three region problem

corresponding to Fig. 3b. In Region 1 supercurrent flows such that Region 2 is completely

shielded. Region 3 is the stabilizer which has field but no steady state current.
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Boundary conditions

In Fig. 3b, x = wo, y = 0 and y = d + d are symmetry planes and the unit cell

conductor shown is one-fourth of the actual conductor. The first conditions are related to

symmetry and are given by

87T1 OT2 (T 3
(x,0) =-- (x,0) -- (x,d+d) 0

ay y By
aT2  ___

a (Wo, y) = T (wo, y) = 0

9A1  aA3
l(X, 0)--y (x, d+ d)=0 (7)

a (wo, y)= 0.ax

Next, consider the superconductor/stabilizer interface (y = d). Across this boundary jump

conditions must be satisfied which can be expressed as

[Tjy=d = 1T = 0

OA

[AAy=d = [ ]A y = 0 . (8)

The next boundary is x = 0. Here, the exact thermal boundary condition is

(0, y) = h [T(0, y) - TB] (9)

where h is the heat transfer coefficient from the conductor to the coolant and TB is the

bulk temperature of the coolant. Under normal conditions,

,/hw < 1 (10)

and

hw/k < 1 (11)

where OT/Ox ~ T/w, w is the penetration depth of the field into the superconductor

(Fig. 3) and n and k are the thermal conductivities of the superconductor and stabilizer.

Thus, to a good approximation the thermal boundary conditions become

TI(0, y) ~ TB
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8T (0, y) 0 (12)

The magnetic boundary conditions at x = 0 depend upon the spacing between conductors

within the coil (see Fig. 4). Requiring the total flux to be conserved during a perturbation,

leads to the boundary condition

A1 2A 1 (0,y) =B W

aA3  2A 3 (0,y) -B +13
Sy - (1 + (13)

where £ is the spacing between the conductors and BO is the external magnetic field. Since

aA/ax ~ A/w the boundary condition may be simplified according to the size of w/i. In

the limit
W

< 1(14)

the boundary condition becomes

aA1  aA 3
ax (0, y) a (0, y) ~ -Bo . (15)

The final conditions to be specified occur at the surface S1 , which is a complicated

free boundary, determined by simultaneously requiring A(S 1 ) = 0 and n . VA(Si) = 0.

This is a very difficult calculation. To simplify the analysis S1 is approximated by Sa

as shown in Fig. 5, corresponding to the assumption that the equilibrium magnetic field

is one dimensional, penetrating the same distance into the superconductor and stabilizer

as determined by the critical state model. Thus, at equilibrium w = Bo/poJ(To). The

boundary conditions at Sa are given by

Ts = faT/axis. = 0

A1(Sa) = 0

aAl(Sa) = 0 . (16)

In this approximation the tendency for the field to "bulge out" in the stabilizer region is

ignored as well as the small surface current that develops on the superconductor-stabilizer
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interface. The shape Sa greatly simplifies the stability analysis, allowing us to easily

calculate how w moves during a period of flux penetration. Note also that region 3 has

now been subdivided into two sections for convenience.

Under these assumptions, the equilibrium solution is given by

T1= T2 = T3=T4 TO

A2 = A 4 = 0 (17)

A1 = A3 = B -_ 2
2w

To < T, represents the operating temperature of the superconductor.

General linearized equations

The stability of the tape is analyzed by determining the linearized conditions for the

exponential growth of perturbations about the equilibrium solution just described. All

quantities are expanded as

Q(x, y, t) = Qo + Q(x, y)elt (18)

where Qo represents the equilibrium value, Q represents perturbation (Q/Qo < 1), and y

is the linear growth rate. Substituting into the basic equations and linearizing yields a set

of equations for the perturbed quantities in each region

Region 1

Region 2

Region 3

Region 4

YCTi. = -V2T, _yJoA1
v 2A 1 = (1Ao JcTc)Ti

-YCT2 = KV 2';2

A2 =0

1063 =V2T3

rynioA3 = V2 A3

yO4 = kV2

7 po A4 = V2A4

7
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Here, C and C are the superconductor and stabilizer specific heats, i/ is the stabilizer

resistivity, and J0 = J,(1 - To/Tc). In region 1 it has been assumed that T 1 is positive

everywhere when linearizing J(T). For T1 < 0, Eq. (6) implies that Ji = 0.

Nature of the solutions

Insight into the nature of the solutions for -y can be obtained by multiplying each

equation by its respective complex conjugate variable. After integrating and manipulating

algebraically, one obtains the quadratic relation

A' 2 + By + C = 0 (20)

where

A= J|i2dS
j3

4

B= J jCI't|2 + (TI - TO) VAj12 dSj + Jo(Ai* + *ti1)dSi (21)
[1j=1 /L

4

C = E .j|vI2dsj
j=1 

j1 ~

and the subscript j denotes the different regions of the problem. Observe that (1) the

coefficients A, B, and C are all real, (2) A and C are positive definitive, and (3) only the

last term in B can be negative. The nature of the stability transition can be understood

by considering the behavior of y as a function of B or equivalently J0 .

Since Eq. (20) is quadratic in -y, the solutions are

y = [-B ± (B2 - 4AC)1/2 . (22)

Figure 6 illustrates the solution in the complex y plane. When J0 = 0, then B > 0 and

there are two stable roots. As Jo increases, B decreases but still remains positive. When

B 2 = 4AC, B > 0, the roots divide into a pair of complex conjugates with Re(y) < 0. The
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system is still stable. As J0 further increases, B eventually equals zero. At this point y has

two purely imaginary roots and Re(,)=O. Additional increases in Jo cause B to become

negative. The roots again occur as complex conjugates, although now Re(y) > 0. As

Jo continues to increase, B continues to decrease, and the roots merge when B 2 = 4AC,

B < 0, after which there are two real roots for 7 with Re(-y) > 0.

Because of the asymmetric behavior of J(T) about To, the true marginal stability point

occurs when B 2 = 4AC, B < 0 as indicated in Fig. 6. The complex roots with Re(y) > 0

are not actually unstable for the following reason. A mode with Re(y) > 0, Im(y) $ 0,

is oscillatory as well as growing and thus generates a t 1 which is positive part of the time

and negative other times. However, whenever Ti < 0, then as previously discussed, J1 = 0

thereby modifying the coefficient B; in particular, the destabilizing term vanishes. We

have attempted to find solutions to the linearized equations including alternating regions

of positive and negative T 1 , with the corresponding values of J1 = -(Jc/Tc)t 1 or Ji = 0.

In no case did we find an eigenmode with Re(-y) > 0.

Case 1: the unstabilized, one dimensional tape

The simplest and most unstable geometry to analyze is a one dimensional, unsta-

bilized tape. The external magnetic field is normal to the tape and penetrates into the

superconductor as shown in Fig. 7. One now has S3 = S 4 = 0 so the coefficient A = 0

and the solutions for the growth rate reduce to -y = -C/B. 7 is always purely real and

the transition from stable to unstable occurs as B -+ 0 with -y switching from -oo to +oo.

There is no "normal" point of marginal stability through -y = 0. The linearized unstable

growth rate is infinite at the transition. This divergence is resolved shortly by a nonlinear

theory.

For case 1, Eq. (19) simplifies to

d 2 A, _ -
dx 2 T

d2 t

dT2 =yCT1 + -yJol (23)

9



d2 T2

dx2 = CT2

The problem is simplified by converting to dimensionless parameters. By substituting

p = X/wo, U, = Ti/Tc, U2 = 2/T, 01 = Ai/1 uow2J, and introducing F = _ywC/,

A = w/wo = Bo/poJowo, a = powOJoJc/CTc, the eigenvalue problem can be written as

d2,0

dp2 = U1

d2 U1
dp2 =17Ui +aF0i (24)

d2 U2
=FU2dp2

subject to

U2(1) = 0

01(A) = U1(A)/Ul(A) - U2(A)/U 2(A) = 0 (25)

0'1(0) = Ui() = 0.

Equation (25) accounts for all boundary conditions except OA1 (Sa)/p = 0. Linearization

of this condition describes how the free boundary w moves under the perturbation; that is

writing Sa = w + 8w yields 8w/wo = 0'(A)/(1 - To/IT).

The eigenvalue problem for F can be solved in a straightforward manner. First, the

solution in region 2 is easily found and is given by

U2 = U2 0 cosh[F 1/ 2 (1 - p)] (26)

which implies that

U(A) 1/2 tanh[F/2(- A)] . (27)
U2 (A)

The solutions in region 1 can be written as
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4

= cj exp(kjp)
j=1

4

U1 = cjk exp(kjp) (28)
j=1

where k =-k2 K, k3 =-k4 = iH and

K2 = + 1(2 + 4ar)1/2

H2 = -- + (2 +4ar) 1 /2 . (29)

The c3 are unknown coefficients. Applying the boundary conditions on U1 and 01 from

Eq. (25) leads to a set of four linear homogeneous algebraic equations for the cj. Setting

the determinant to zero gives the following, somewhat complicated dispersion relation for

r.

2aF + (r 2 + 2ar) cosh KA cos HA + a 1 /2F3/2 sinh KA sinHA - - /2 tanh[F'/ 2 (l - A)].
(H 2 + K 2 )(H coshKA sin HA + K sinhKA cos HA)

(30)

The stability threshold can be determined by noting that (from the definition of H)

r = H 4 /(a - H 2 ). Thus, instability only occurs when 0 < H 2 < a. Next, recall that the

stability transition occurs through r -- oo implying that a ~ H 2 and K - oo. In this

region of parameter space the dispersion relation reduces to

r1/ 2 - -a1/ 2 tan(al/ 2A) (31)

The condition for stability is given by

a1/2 A < 7r/2 (32)

or in terms of the physical variables

B < -poC(Tc - To) . (33)
4
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This result is identical to adiabatic limit first derived by Swartz and Bean.2 Observe that

without a stabilizer, only a small magnetic field is required to drive the instability. For

instance, for NbTi with C = 5.5 x 103 J/m 3 K, T, = 6.5 K, then B 0 ~ 0.2T. In physical

units, the characteristic growth rate is of the order

- To)(4[10Kj2(Tc - 0)
C2 T2 (34)

For typical parameters r = 0.1 W/m K and Jc = 1.5 x 10 9 A/m 2 , then y 510 (sec)-1,

a very fast growth rate indeed.

The last point of interest is the eigenfunctions which are illustrated in Fig. 8. Note

that all of the eigenfunctions are smooth and satisfy the boundary conditions. Also, as

required, the function U1 (p) is always positive.

Nonlinear solution

While the linearized analysis leads to many physically intuitive results, its main weak-

ness is the prediction of infinite growth rates at the stability transition. This question is

addressed by means of a nonlinear solution obtained by variational techniques.

An examination of the basic model indicates that there are two important nonlin-

ear effects to consider. First there is the JE contribution to the main instability drive.

Heuristically, the electric power generated by flux penetration can be written iteratively

as

JE ~- -- y JOZ 1 - .0T (35)

Note that as -y -+ oo, the "small" nonlinear term grows infinitely fast and, since U1 > 0,

is in the direction to oppose the main destabilizing drive. In other words, as the temper-

ature increases due to the instability, the current J(T) decreases nonlinearly, producing a

stabilizing effect.

The second important nonlinear effect is the time dependence of the penetration

depth. As the instability grows the boundary between regions 1 and 2 moves such that
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w -* wo; that is as J(T) decreases a wider current carrying region is required to shield the

same magnetic field. This additional penetration produces further heating, representing a

nonlinear destabilizing effect.

Both of these effects are included in the analysis presented below. The nonlinear

equations in region 1 have the form

_T1 _ 
2 T1  0A 1  T1

C -- 5 -.2 - J-

a2 A 1 - T . (36)
a2 =-#c " T, (6

Introducing normalized variables, Ti = To + (T, - To)U, A 1  (poJoW2 )0, x = p, and

t = (U52 C/ )r leads to

(U -2U 29
-=--aA2(1 -U)-

a-r (9p2 a-r
a2o

2=2-(1 -U) (37)

where Ui = Bo/pOJO and aA2 = poUJoJ/CTc as in the linear case. The boundary

conditions are given by

U(O, -) = 0, - = 0
ap

U(s, r) =?O(s, r) = (S,r) = 0 . (38)

Here, s(r) = w(r)/iJ represents the moving interface between regions 1 and 2. Initially

s(O) = 1. Note also that U(s, r) has been set to zero rather than matching onto a region

2 solution. In the limit of rapid growth this is a good approximation, introduced here

primarily for simplicity.

Equation (37) can be cast in the form of a pair of variational principles for U and 4'
and solved using trial functions. The variational forms are

Lu= dp [U + -aA2 (U2-2U)
o 57- ( 2 ( - ]p +9,r

L,= dp 2 ) 0(i -0)] +,O(0,r) (39)
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where U and b are held fixed during the variation. Once the variation is taken, then U
and are set to U and k respectively. After carefully considering the boundary conditions

and differential equations, we choose the following trial functions for U and 0

U = U(z - z2)

- s + 2sz - 2 2 +2(2 - s)z3 _ (S2 - s)z4 . (40)

Here, the substitution p = sz has been made. The functions U(r) and 8(r) are the

unknown time dependent variational functions.

Equation (40) is substituted into Eq. (39). The equations determining U and s are

obtained by setting

8Lr1
au- -0

- 0. (41)
Os

After some algebra one obtains a single equation for V(-r) = U(r)/6 given by

[1- aA2f(V)] dr Vg(V) (42)

where

20(1 - V) 3

2 - V

13 [1 - V/(1 + v 5/9)][1 - V/(1 - v3/9)] (43)
21 (1 - V) 2 (2 - V)

In the analysis, the superconductor is considered unstable if the temperature anywhere

reaches the value Tc. From Eq. (40), it follows that the maximum temperature occurs when

z = 1/2 (i.e. x = w/2). In terms of V, TmaO = T, when V = 2/3. The goal now is to solve

Eq. (42) to determine under what conditions, and how long it takes, for V(r) to reach the

value 2/3.

Consider first the linear regime V < 1. Equation (42) reduces to

(1 - 13aA2 ) -10V (44)
42 d7
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which has as its solution V = Vo exp(Fr) where

r _ 32.3 (45)
aA 2 

- 3.23

As in the exact linear case the stability transition occurs through F --+ 00. The critical

aA2 has the value aA2 = 42/13 ~ 3.23, which should be compared with the exact value

given by Eq. (32), aA2 
-r2/4 = 2.48. This difference is a consequence of substituting

trial functions rather than the exact form of the eigenfunction and using slightly different

boundary conditions at the region 1-2 interface.

It is now of interest to set aA2 = 42/13 in the nonlinear case to determine how the

linear solution with infinite growth evolves nonlinearly. Choosing this value for aA2 , we

find that the equation for V reduces to

dV 260(1 - V) 5  
(46)

d-r 13V 2 - 25V + 11

Observe that in contrast to the linear theory, V(r) is well behaved even for small ampli-

tudes; there is no infinite growth. A numerically computed solution is illustrated in Fig. 9

where we see that V increases monotonically in time reaching the critical value V = 2/3

at T = 0.09. At this time the superconductor goes normal.

Case 2: two dimensional tape with perfect stabilizer

The one dimensional unstabilized tape represents the most unstable system and pro-

vides a lower bound to the stable parameter space. An upper bound is obtained by

considering a two dimensional tape in contact with an ideal perfectly conducting stabilizer

( = 0, k = oo). Using the same normalization associated with Eq. (24), the governing

linearized equations have the form

V 2 U1 = rU 1 + aro1

V201 = U, (47)

V 2 U2 = rU 2
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where V 2 = a 2 /8p 2 + 02/8C 2 and p = x/wo, ( = y/wo.

In the stabilizer U3 = U4 = 03 = 04 = 0 because of the assumptions of infinite

thermal and electrical conductivity. The effect of the stabilizer enters only through the

boundary conditions, which are summarized below

U1(0, () - (0, ) 0ap
U1(p,e) = U2 (p,E) = 1(P, E) = 0

U 2
F(wo,) = 0 (48)

9U1  e9U2  ___

p, (p,O)p, 0) = (p, 0) = 0

01(A, C) = [ /U] = 0.
ap

Here E = d/wo is the dimensionless superconductor thickness. The dominant effect of the

stabilizer is to force the perturbed temperature and flux to be zero along the stabilizer-

superconductor interface C = E (i.e. y = d). In this simplified ideal model, the coefficient

A appearing in Eq. (21) vanishes indicating that only real solutions for F are possible and

that the stability transition occurs through F -- oo.

The solution to Eq. (47) can be found by separation of variables:

0 1 (p, C) = 1(p) cos(ky()

Ui(p,() = U1 (p) cos(ky() (49)

U2 (p, C) = U20 cosh[k,(1 - p)] cos(kyC)

where k = (7r/2E) 2 and k2 = (7r/2e) 2 + F. Substituting into Eq. (47) yields a set of one

dimensional equations for the functions U1 (p) and 01 (p)
d2U, - k2U 1 - ar1 = 0
dp2

d2 0k1 - U 1 = 0 (50)

subject to

U1 (0) = d (0) = 0
dp

01 (A) =-1 (A) /U1 (A) + k. tanh[k,,,(1 - A)] =0 .(51)
dp
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As in case 1, this is a fourth order system whose solutions can be written as

4

= cj exp(kp)
j=1

4

U1 = c( - k ) exp(kjp) (52)
j=1

where k = k2 K, k3 =-k 4 = iH and

K2 = k2 + - + 1 (2 + 4aF)'1 2
Y 2 2

H 2 = k - F+ (2 + 4,r)1/2 (53)

Applying the boundary conditions and setting the resultant determinant to zero yields the

following dispersion relation

2aFKH + (r 2 + 2aF)KH coshKAcos HA + aF( + 2k2)sinhKA sin HA

(K 2 + H 2 )[K(H 2 +k)coshKAsinHA + H(K 2 - k2)sinhKAcosHA]

= -k, tanh[k, (1 - A)] .

As expected, this complicated expression reduces to the dispersion relation for case 1 when

k2 -+ 0.Y

If one again considers the transition region where F -+ oc, then Eq. (54) reduces to

the following simple expression for F

a 1/2 ~ tan Ho, A (55)

where Ho = a - k2 . The condition for stability can be written as

2 1/2
1/2< (+ (56)

which should be compared to Eq. (32). Since d < w for most applications, Eq. (56)

represents a much weaker restriction on a than case 1. The interpretation is clear. In case

1 the only path for heat generated by flux penetration to leave the system is by thermal

conduction across the x = 0 boundary. This is a relatively weak effect and instability can
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easily occur. In case 2, the stabilizer acts as a perfect heat sink. Thus, when d < w, there

is a much shorter path available for heat to leave the superconductor and a much greater

flux penetration can be tolerated.

Equation (56) can be expressed in terms of the physical variables as follows

2 w2 2

110j d2+w2 <C(TC - To). (57)

In the interesting limit d < w, Eq. (57) simplifies to

2

LOJO d2 < C(T, - To) (58)

indicating, as expected, that low current density and a thin superconductor tape are de-

sirable for stability. The dependence on J d 2 is similar to the stability limit for a face

cooled conductor. 3 By treating the stabilizer as a perfect conductor, it has effectively be-

come an ideal coolant. Finally, the perturbations U1 (p, ) and 01 (p, () are illustrated in

Fig. 10. The contours display a strong two dimensional dependence and clearly satisfy

the boundary conditions. Also, the perturbed temperature U1 is positive everywhere as

required.

The general two dimensional case

The general two dimensional case represents the most realistic stability treatment.

Even after linearization, the problem remains quite complex because of the high order of the

system and the two dimensional geometry. To obtain an analytical solution we introduce

an asymptotic expansion based on the small parameter d/w, the ratio of thickness to width

of the superconductor.

After careful consideration we introduce the following normalized quantities (some-

what different from the previous normalization) in order to clarify the nature of the ex-

pansion: A3 = poJod 2oj, T = (Tc - To)U, x = wp, y = d( = d + ,= (/Cd 2 ),

a =po J~d2 /C(Tc - To ), 6 = po/^.IC, v = Ow2 2/Cdk, f = d2 /d2 , and e = d2 /w 2 . Note

that two definitions have been introduced for y so that 0 < ( < 1 in the superconductor,

18



0 < < 1 in the stabilizer, and C = 1 is the interface. The linearized equations can be

rewritten as
L01 = U1  02 = 0

LU 1 = FUl + arFb 1  LU 2 = FU2
(60)

L'03 = 6or03 L0 4 = 683F4(6

LU;; = ve/3FU3 LU 4 = veflFU 4

where L and L are the differential operators

02 + 2

L 2 + E02 . (61)

With this normalization we introduce the following asymptotic ordering o. ~ Uj ~ ~

a - 6 - v - 3 ~ 1, motivated by substituting typical numerical values for a, 6, v and 0.

Only the parameter E is assumed small: E < 1.

We now proceed to solve Eq. (60) region by region by expanding all dependent vari-

ables as an asymptotic series in E. Consider first region 2. The leading order solutions for

02 and U2 satisfying the boundary conditions at C = 0 are given by

02(P, C) = 0

U2 (p, C) = U2(P) cosh(F1 / 2C) + ... (62)

Here U2(P) is an arbitrary function. Similarly, in region 4 we obtain

04 (P, V ) =4(P) cosh[(or) 1/2] + .. .

- d2U4 42
U4 (p, ) =U 4 (p) + E(vrU 4 - dp2 4) - +... (63)

Both b4 and U4 satisfy the boundary conditions at ( = 0, and U 4 (p), Vk2(p) are arbitrary

functions.

We next match the jump conditions across the interface between regions 2 and 4. The

jump conditions for the flux yield

04(P) = 0 -(64)
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The temperature jump conditions give

U2(P) cosh r 1/ 2 = U 4 (P)

U2(P)' sinh r1/ 2 = _ vrU4 - 4 (65)d d ( dp2

Eliminating U 2 'leads to a differential equation for U 4

d2 U4 _ _2
dp2  -U4=0

2 C tanhpl/2(
k, v(+( 1/2 r1/2) (66)

The solution satisfying the boundary condition at the midplane x = wo has the form

U 4 (p) = U40 cosh[kP(p - wo/w)] (67)

where U 40 is an arbitrary constant. These results can be combined to give proper boundary

conditions across the interfaces separating regions 1 and 2 and regions 3 and 4

02(1,) =044(1,() 0

= -Wktanh[kf(wo/w -1)] . (68)
U2 -- P ,_ U=c= 4 iP I_

Consider next the solution in regions 1 and 3. The solutions for 0 3 and U3 satisfying the

boundary conditions at = 0 are given by

03 (P, V;3 =3(P) cosh[(pr) 1/2 ] + .

U3 (p, 3) = 3 (P) + E vFU3 - d2 3) ... (69)

where V;3(p) and U 3 (p) are arbitrary functions.

The solutions for 01 and U1 are coupled. A short calculation yields

V)1(p, C) = F1 (p) coshK( + F2(P) cos H( +...

Ui(p,C) = K 2F1 (p) cosh K( - H 2 P 2 (p) cosHC + ... (70)
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Here F 1 (p), P 2 (p) are free functions and

K 2= + " (F2 +4aF)1
2 2

H 2 = 2 + 2 (2 + 4ar )  (71)

'b1 and U1 satisfy the boundary conditions at C = 0. Matching the jump conditions on

and U across the region 1-3 interface leads to a set of four linear equations involving the

quantities F1 , F 2 , V1, U 3 and U3. After a straightforward calculation F 1 , F 2 and b1

can be eliminated in terms of U 3 and U'. The end result is a differential equation for U 3

which can be written as

d2 U3 2-
dp2 + k U 3 = 0 (72)

where

k ( F + C 2z (73)

z= HK(H2 + K 2 ) tanhK tanH + (8r)1/ 2 tanh(b53) 1/ 2 (H3 tan H - K 3 tanh K)
HK(H tanh K - K tan H) + (H 2 + K 2 )(S) 1 / 2 tanh(boF)1/ 2

The dispersion relation is obtained by solving Eq. (72) and then choosing F (i.e. k2)

so that the boundary conditions are satisfied at p = 0 and p = 1. The boundary conditions

are somewhat subtle. By introducing the asymptotic expansion, the ( 2 /9p 2 term has been

neglected in three of the four differential operators occurring in the region 1-3 solutions;

the order of the system with respect to p has been reduced from eighth to second order.

Thus, only two rather than eight boundary conditions can be applied, and it is crucial to

determine which two are dominant. The fact that Eq. (72) is written in terms of U3 does

not imply that the U 3 boundary conditions are dominant. We could just as easily have

eliminated variables in terms of any of the other unknowns.

To understand the nature of the problem assume that Eq. (72) is solved subject to

the U3 boundary conditions: U3(0) = 0,U'3(1)/U 3 (1) = -kp tanh[kp(wo/w - 1)]. The

solution for U 3 is sketched in Fig. 11a for the case F < 1. Also illustrated are the solutions

for the other quantities along the interface ( = = 1. The solid lines represent the solutions

obtained by directly calculating the other quantities from U 3 . The dashed curves represent
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the same quantities, modified only near the boundaries p = 0 and p = 1, in such a way as

to satisfy the proper boundary conditions. Note that U1 and 01 exhibit large, unphysical

jumps. Mathematically, this implies that the neglect of a 2 /9p 2 terms in the solutions for

U1 and 01 is a poor approximation for the U3 boundary conditions.

These considerations lead us to conclude that the U1 (0,C) and 01 (1, C) boundary

conditions are dominant. In terms of U 3 this requires U 3 (0) U 3 (1) = 0. A sketch

of these solutions is illustrated in Fig. 11b. Note that only small modifications to the

asymptotic solution are required for each quantity to satisfy the appropriate boundary

conditions. The implication is that for the boundary conditions U 3 (0) = U 3 (1) = 0, the

, 2 /9p 2 terms neglected are indeed small and the asymptotic solution represents a good

approximation to the true solution.

A simple physical interpretation of the boundary conditions is as follows. The pres-

ence of the coolant at x = 0 and the shielding at x = w make both of these points act

as approximate heat sinks. Thus, we intuitively expect the most unstable temperature

perturbations to be localized away from these points in order to make access to cooling

most difficult. This is the behavior indicated by U1 and U3 in Fig. 11b.

Based on the above discussion we determine the dispersion relation by solving Eq. (72)

subject to U3 (0) = U3 (1) = 0. The result is

k = 7r2 (74)

where k2 is the complicated expression given by Eq. (73).p

The stability threshold can be obtained analytically by considering the interesting

limit r -* 0 and 6 < 1. The condition r -+ 0 appears to violate the discussion associated

with Eq. (22) which implies that -y = -B/2A is finite at the stability threshold B 2 =

4AC, B < 0. A careful dimensional analysis not presented here, shows that in terms of the

normalized variables r ~ e 2 at this point. Because of the small e expansion, the threshold

in our analysis appears at F = 0 in leading order.

The condition 6 < 1, which is reasonably well satisfied for practical cases, is required

to eliminate spurious roots from the dispersion relation. For typical parameters . =
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0.1W/mK, r^ = 2 x 10-9fm, and C = 5.5 x 103 j/m 3 K, then 6 ~ 0.01. The quantity 6 =

r/rK where r- and r, are the resistive diffusion time across the stabilizer and the thermal

diffusion time across the superconductor respectively. For 6 < 1, the flux can diffuse

"instantaneously" with respect to the flow of heat. This is consistent with the structure

of the eigenfunctions in the stabilizer and superconductor, which connect smoothly across

the interface. When 6 > 1, the stabilizer acts like a perfect electrical conductor and as

flux penetrates the superconductor a surface current must develop across the interface.

This regime requires a different set of boundary conditions than those imposed on the

asymptotic solutions, much more closely related to case 2, the two dimensional tape with

perfect stabilizer.

On the basis of this discussion, we introduce the assumptions F - 0 and.6 < 1 into

the dispersion relation. A short calculation yields

S70[3 C av

7r2, ( 306 _ 1/2 a

Fo 7r 2 (v + 27r2 + vC r4 1/2 (75)
3 1/2C+ 15 vC

Near marginal stability F is an increasing function of a. The condition for stability can be

written as

a < 301/26 (76)
I + 3vC/7r2 31/ 2 C

or in terms of the physical parameters

_TW < - (77)
7 ~d 1+ 7r2ddk/3w2K

Equation (77) is the desired stability relation. If one takes the limit ddk/w 2K -+ 0,

then the second term in the denominator is negligible and the stability criterion reduces

to

j2w2 < 7 ( (T - To). (78)0; d

This result is identical to the stability condition first derived by Hart' except for a numer-

ical factor. The 7r 2 in Eq. (78) should be replaced by 7r2 /4 for equality. This discrepancy

is presumably due to slightly different assumptions about the boundary conditions.
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The additional term in the denominator of Eq. (77) represents a destabilizing effect;

that is, the critical Jow is lowered. Physically, the term represents the ratio of the thermal

resistances across the height of the superconductor to that along the current carrying width

w of the stabilizer. Even though d < w, the resistances can be comparable since k >> K.

To determine the importance of this term we plot in Fig. 12 curves of the critical

Jow vs w/d for various d/d, assuming Nb 3 Sn with k = 10 2 W/m K, K = 10-1 W/m K,

Tc -To = 14 K, 4 = 2 x 10-9am, and C = 5.5 x 103 J/m 3 K. Also plotted for comparison are

the results for the idealized cases given by Eqs. (33) and (58). Note that when w/d$ 100

the thermal diffusion in the superconductor can become important in the general case.

Discussion

The flux jump stability characteristics of a tape superconductor have been analyzed for

several different cases: unstabilized superconductor, perfectly stabilized superconductor,

and a full two dimensional stabilized superconductor with finite k and i in the stabilizer.

The stability boundaries for these cases, Eqs. (33), (58), and (77) can be written in a more

uniform form useful for comparisons.

Unstabilized Tape:

< -- (79)
C(Te - To) 4

Perfectly Stabilized Tape:
poJo~w2  ,2 /\ 2

1O 0W < 7r.-(80)
C(Te-To) 4 d

Two Dimensional Case:

pi0 J~w2  26 /W
2  

T,/r<i J' r (81)
C(T -T) C d) 1+ (R8R

In Eq. (81) r- = pod2/ and rk = w 2/k are the characteristic times for flux diffu-

sion across the stabilizer and thermal diffusion along the stabilizer respectively. Similarly,

R L = 2d/3KwL and R1 = 2w/ir2kL are the thermal resistivities across the superconduc-

tor and along the stabilizer respectively, with L the length of tape along the direction of
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current flow. Since rm < rp for the cases under consideration, the two dimensional bound-

ary lies intermediate to the two idealized cases. The analysis presented here shows that

thermal conduction across the superconductor can play a significant destabilizing role for

w/d< (3dig/dK)1/ 2  100.
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Figure captions

Fig. 1 Schematic diagram of (a) edge cooled and (b) face cooled superconducting tapes.

Fig. 2 Model of J(T) for the superconductor.

Fig. 3 (a) Steady state current pattern in the actual superconductor-stabilizer system;

(b) Simple approximation used in the analysis.

Fig. 4 Geometry determining the magnetic boundary condition. The total flux <P is

conserved during a perturbation.

Fig. 5 Multi-region geometry used for specifying the boundary conditions. Also shown

is the approximate free boundary surface Sa.

Fig. 6 Trajectory of the roots of the dispersion relation in complex y space as Jo is

increased.

Fig. 7 Unstabilized, one dimensional tape geometry, showing the equilibrium magnetic

field.

Fig. 8 Normalized eigenfunctions for the unstabilized superconductor with w/wo = 0.5.

Fig. 9 V(-r) vs r at the marginal stability point aA2 = 42/13. The superconductor goes

normal when V = 2/3.

Fig. 10a Contour plots of U1 (p, ).

Fig. 10b Contour plots of 01 (p,() for the case a = 10 3 , A = 0.5, F -+ 00.

Fig. 11 Sketch of Uj(p, 1),4Oj(p, 1) vs p for (a) the U3 boundary conditions at p = 0,1

dominant and (b) the U1 and 01 boundary conditions at p = 0,1 dominant.

Fig. 12 Curves of critical Jow vs w/d for various d/d.
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Fig. 3 (a) Steady state current pattern in the actual superconductor-stabilizer system;

(b) Simple approximation used in the analysis.
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Fig. 8 Normalized eigenfunctions for the unstabilized superconductor with w/wo = 0.5.
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Fig. 9 V(r) vs r at the marginal stability point aA2 = 42/13. The superconductor goes

normal when V = 2/3.
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Fig. 10a Contour plots of U1 (p, ).
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Fig. 10b Contour plots of 01(p, ) for the case a 103 , A = 0.5, r - oo.
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Fig. 11 Sketch of U (p, 1), Ob1(p, 1) vs p for (a) the U3 boundary conditions at p = 0,1

dominant and (b) the U1 and 01 boundary conditions at p = 0, 1 dominant.
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