
PSFC/JA-07-2  
 
 

Equilibrium beta limits in a dipole configuration 
 

Luca Guazzotto, Jeffrey P. Freidberg and Jay Kesner 
 
 

 
 
 

 

MIT Plasma Science and Fusion Center, 
 167 Albany Street, Cambridge, MA 02139, U.S.A.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work was supported by the U.S. Department of Energy, Grant No. DE-FG02-91ER-54109. 
 
Submitted for publication in the Physics of Plasma (February 2007) 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78059537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Equilibrium limits in a dipole configuration

L. Guazzotto J. P. Freidberg J. Kesner

Massachusetts Institute of Technology, Plasma Science and

Fusion Center, Cambridge, Massachusetts 02139

Abstract

The levitated dipole configuration is an innovative concept for fu-

sion research. One of the main advantages of the dipole configuration

is the possibility of stably confining high plasma pressure compared

to the magnetic pressure, that is the possibility of achieving high βs

(where β is the ratio between plasma pressure and magnetic pressure).

The present work investigates the limit on equilibrium β existing in

the dipole system. It is found that a limit exists, which is considerably

modified by the presence of plasma rotation in the toroidal direction

(the long way around the torus). Plasma anisotropy instead does not

modify the limit in any appreciable way for the moderate anisotropies

considered in this work.
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I. Introduction

One important measure of attractiveness of the levitated dipole con-

figuration for fusion energy applications is its MHD β limit. A high

stable value is required because of the need to use advances fuel cycles,

such as D-D (deuterium-deuterium) to avoid an excessive neutron wall

loading on the surface of the superconducting levitating coil. [1]

The issue has been addressed by the means of a cylindrical analysis

in which the Levitated Dipole Experiment (LDX) is modeled by a

linear, hard core Z-pinch [2]. The result shows that MHD sets three β

limits (where β is the ratio between thermal and magnetic pressure).

The first is a pure equilibrium limit arising from the need to keep the

pressure hollow with a zero value at the surface of the levitation coil.

This limit for the cylindrical model (with the ratio of specific heats

γ = 2) is quite high: β̄ ≤ 0.84. Here β̄ is the volume averaged “beta”

defined such that 0 ≤ β̄ ≤ 1. The second limit is due to the m = 1

helical mode. [2] Here, the hard core provides a strong stabilizing

effect leading to the limit β̄ ≤ 0.54, again a reasonably high value.

The third and strictest limit arises from the m = 0 interchange mode

[3] (i.e. the sausage instability). This mode is stabilized when the

pressure profile decreases sufficiently gradually near the outer edge of

the plasma and the result is a limit β̄ ≤ 0.5. All limits have been

obtained with a specific, but realistic, shape for the plasma pressure

profile. The conclusion from the cylindrical analysis is that the MHD

β limits are all high, a desirable result for LDX.

Still, some caution should be exercised since LDX is a toroidal con-
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figuration with a tight aspect ratio. Thus, while the cylindrical results

provide good qualitative insight, the analysis should be repeated for

the more realistic toroidal geometry to obtain more reliable quantita-

tive predictions. In the present work we address the first and simplest

of the MHD β limits, that due purely to equilibrium force balance.

Since the configuration of interest corresponds to a 2-D axisym-

metric torus the results must be obtained numerically. This is ac-

complished by means of the MHD equilibrium code FLOW [5], which

solves a generalized form of the Grad-Shafranov (GS) equation, in-

cluding the effects of toroidal flow and pressure anisotropy as well as

the usual pressure gradient and magnetic forces.

The results show that for the isotropic case with zero flow the equi-

librium β limit persists. The actual β limit is substantially lower that

for the cylindrical case because of the large volume of low pressure

plasma that arises in the outer region of the dipole magnetic configu-

ration. For the studies presented here we find that the equilibrium β

limit is reduced to β̄ ≤ 0.046. This result has also been obtained for

a specific, but reasonable, shape of the pressure profile. In particular,

we consider only profiles with a single peak in the plasma region cor-

responding to a single frequency external electron cyclotron heating.

The next set of numerical calculations adds the effect of toroidal

rotation, keeping the plasma isotropic. Flow reduces the β limit since

the confining magnetic field must now be apportioned between both

the thermal and centrifugal forces. The amount of β̄ reduction de-

pends upon the magnitude of the flow and how close its peak is with
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respect to the pressure peak. The largest reduction occurs when the

peaks overlap. For this case a flow corresponding to a sonic Mach

number Mϕ = 0.4 reduces the β̄ limit to about 77% of the static

value. Here M2
ϕ =

(
V 2

ϕ

)
max

/ (γp/ρ)max.

The last set of numerical studies includes the effect of pressure

anisotropy but sets the flow to zero. The interesting experimental

case, corresponding to electron cyclotron heating, has p⊥ > p‖. The

results show that for reasonable experimental ratios, p⊥/p‖ . 1.4,

anisotropy makes only a small correction to the equilibrium β limit.

The main part of the paper describes these results in detail in the

following order: (1) review of the cylindrical results, (2) formulation of

the toroidal equilibrium problem, (3) β̄ limits for an isotropic plasma

with zero flow, (4) β̄ limits for an isotropic plasma with non-zero flow,

and (5) β̄ limits for an anisotropic plasma with zero flow.

II. The cylindrical model

A basic understanding of the equilibrium limit in a dipole configu-

ration can be obtained utilizing a cylindrical model, and this is the

goal of the present section. By ignoring toroidal curvature and non-

circularity, one can model a levitated dipole system by a hard core

Z-pinch; the hard core corresponds to the levitating dipole coil. In

the absence of an axial magnetic field, in a cylinder the equilibrium is

described by the familiar relation:

dp

dr
+

Bθ

µ0r

d

dr
(rBθ) = 0, (1)
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where p is the plasma pressure, r the radial coordinate, µ0 the perme-

ability of free space and Bθ the poloidal component of the magnetic

field. A physical pressure profile has vanishing p(r) on the surface of

the coil and as r → ∞. The pressure peaks at an intermediate value

of r. Furthermore, for a cylinder interchange stability requires the

pressure profile to satisfy

−rp′

p
≤

2γB2
θ

B2
θ + µ0γp

≈ 2γ, (2)

the simplified form being valid in the region of low plasma pressure.

In a torus, the simplified form of the stability criterion can be written

as

− d

dψ
(pV γ) ≤ 0, (3)

where V (ψ) is the volume of the flux tube and γ the adiabatic index.

A cylindrical pressure profile satisfying the previous requirements

is given by: [2]

p(r) = K
r2 − r2

1

(r2 + r2
1)γ+1

(4)

where K is a constant determining the magnitude of the pressure and

r1 is the hard core (coil) radius. If one chooses γ = 2, then an exact

solution to equation (1) can be found:

Bθ =
µ0(Ic + Ip)

2πr

√
1 − 8β̄

(r/r1)4

[1 + (r/r1)2]
3 , (5)

with

β̄ =
16π2

µ0(Ic + Ip)2

∫ ∞

r1

prdr = 1 −
(

Ic

Ic + Ip

)2

(6)

and where Ic and Ip are the coil and plasma current, respectively.

Note that with this definition 0 ≤ β̄ < 1. Pressure and poloidal field
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profiles for a high-β̄ equilibrium are illustrated in Fig. 1 in arbitrary

units. The pressure profile is assigned by equation (4), where K =

[µ0(Ic + Ip)2r4
1/2π2]β̄. Note that β̄ enters in the definition of the

pressure profile only as a multiplicative constant. The poloidal field

profile is determined as function of β̄ by equation (5). It is clear

from equation (5) that as β̄ increases Bθ decreases. The “dip” in

Bθ appearing as effect of high plasma pressure is easily recognizable

in Fig. 1. Eventually, when β̄ is sufficiently large Bθmin vanishes at

r =
√

2r1. This is the equilibrium β̄ limit. The plasma has expelled

all of the magnetic field from the high pressure region and further

increases in β̄ cannot be confined. An alternate interpretation is that

in order to satisfy the requirement p(r1) = 0, the current in the hard

core is only capable of maintaining the hollow pressure profile for

values of p(r) ≤ pmax, where pmax corresponds to the equilibrium

limit.

For the particular choice of γ = 2, the equilibrium limit, which

is quite high, is β̄ = 27/32 ' 0.84. The analytical solution has been

used to benchmark the equilibrium code FLOW [5], which has been

used for all equilibrium calculations described in the remainder of this

work. If a more realistic value of γ = 5/3 is chosen, equation (1)

must be solved numerically; the numerical solution gives a β̄ limit of

β̄ ' 0.89.

The same physics described here applies to a toroidal plasma: as β̄

is increased, the poloidal field becomes more and more hollow, until it

vanishes at a critical value of β̄. The discussion of the toroidal system
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is introduced in the next section.

III. Equilibrium β̄ limit in a toroidal

geometry

The LDX equilibrium is characterized by an axisymmetric toroidal

geometry with non-circular cross section and Bϕ = 0. Therefore, it

is described by a Grad-Shafranov (GS) equation. In the analysis, the

effects of toroidal flow and anisotropy are also included, leading to a

modified GS equation, given by Ref. [4]. The details of the formulation

are described in references [4] and [5]. In the present section we will

only state the results needed for the discussion in the rest of this work.

The three versions of the Grad-Shafranov equation used in the analysis

are as follows:

isotropic, no flow:

1
µ0

∇ ·
(
∇ψ

R2

)
= −dp(ψ)

dψ
(7a)

isotropic, with flow:

1
µ0

∇·
(
∇ψ

R2

)
= −ρ

R2 − R2
0

2
dΩ2

dψ
− γρ

γ − 1
d

dψ

(
P

D

)
+

ργ

γ − 1
d

dψ

(
P

Dγ

)
(7b)

anisotropic, no flow:

1
µ0

∇ ·
[
(1 − ∆)

(
∇ψ

R2

)]
= −ρ

dT‖(ψ)
dψ

(7c)
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In each of these equations the poloidal flux is defined in the standard

way:

B =
∇ψ × eϕ

R
. (8)

For the first case [Eq. (7a)], corresponding to an isotropic plasma with

zero flow, there is a single free function, the pressure p = p(ψ).

For the second case [Eq. (7b)], the plasma remains isotropic, but

has a toroidal flow vϕ = RΩ(ψ). In this situation there are three free

functions, the angular velocity Ω(ψ), the “quasi-pressure” P (ψ) and

the “quasi-density” D(ψ). Notice that neither the pressure nor the

density are flux functions; more details about the relation between

the two physical quantities and their corresponding quasi-functions

are given in Ref. [5]. Here we will just state the results:

ρ = D

[
1 +

1
2
(R2 − R2

0)Ω
2 γ − 1

γ

D

P

] 1
γ−1

, (9)

p = P

[
1 +

1
2
(R2 − R2

0)Ω
2 γ − 1

γ

D

P

] γ
γ−1

, (10)

which are obtained by solving the Bernoulli equation, i.e. the B com-

ponent of the momentum equation. In the following calculations, the

value γ = 5/3 has been used.

The final case of interest [Eq. (7c)] includes the effect of pressure

anisotropy, but assumes zero flow. The anisotropy enters in the left

hand side of Eq. (7c) as:

∆ ≡
p‖ − p⊥

µ0B2
(11)

For this case there are four free functions, T‖(ψ), Θ(ψ), D(ψ) and

B0(ψ). Due to the high thermal conductivity along the field lines,
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thermal equilibration along the field lines is assumed to occur on time

scales much faster than any other equilibration time in the system.

That requires the plasma temperature along the field lines to be a

flux function, T‖ = T‖(ψ). The other free functions enter through the

density:

ρ = D
B

B0

∣∣∣∣B0 − ΘT‖

B − ΘT‖

∣∣∣∣ . (12)

The quasi-density D(ψ) maintains the same meaning as in the case of

Eq. (7b). The anisotropy is defined through Θ(ψ):

T⊥ ≈ T‖(ψ)
B

B − Θ(ψ)T‖(ψ)
. (13)

Pressures and temperatures are connected by two equations of state,

p‖,⊥ = ρT‖,⊥. Finally, B0(ψ) is an integration constant with the di-

mensions of a magnetic field.

An ideal gas relation is used to close the system also in the isotropic

case, writing p = ρT . In the isotropic case temperature has been

eliminated from equations (7), (9) and (10) through the ideal gas

relation.

The equilibrium code FLOW [5] is used to solve equation (7). The

code was originally developed for the study of tokamak equilibria in

the presence of macroscopic flow. In order to apply the code to the

dipole equilibrium problem, a few modifications have been required,

namely:

1. An inner boundary condition is introduced to model the dipole

coil.

2. A non-uniform mesh is required since the flux surfaces are far
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from concentric with respect to the inner and outer edges of the

plasma. The non-uniform grid provides high resolution near the

levitation coil. The grid is coarser in the far outboard region,

where plasma pressure is low and lower accuracy is necessary.

3. Since the grid is non-uniform, the finite-difference differential

operators used for the numerical solution of equation (7) need to

be modified to retain second order accuracy (with respect to the

grid step).

In the present work FLOW is used to solve Eq. (7) in the customary

“fixed-boundary” mode. Here the inner and outer plasma contours are

given as part of the input and information related to ψ is specified on

each surface. Different approximations have been considered for the

boundary shape and boundary conditions. In the present section, we

only discuss the approximation that has been used in the remainder

of this work.

The outer boundary is chosen as a vacuum flux surface located in

close proximity to the actual LDX chamber wall, arising from a simple

dipole current located on the centroid, R = R0, Z = 0, of the actual

LDX coil current. The geometry is represented in Fig. 2. Specifically,

the outer surface r0(θ) is evaluated by numerically inverting:

ψV (ro, θ) = ψV (Rw − R0, 0), (14)

where Rw is the midplane wall radius and ψV is the vacuum flux due

to the circular current filament.

In a similar way, the inner boundary is also assigned as a vacuum
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flux surface. The inner surface has an inner radius ri(θ), which is

determined by modeling the LDX coil with a set of N = 1906 circular

filaments. The vacuum flux surfaces are then determined by simple

superposition. The geometry of the inner boundary and of the LDX

magnet is schematically represented in Fig. 3. The inner radius ri is

determined by requiring the the inner magnetic surface be tangent to

the actual surface of the levitation coil. For simplicity, the surface is

held fixed as β is increased.

Having specified the boundary shapes, the next step is to specify

the boundary conditions. Since each boundary is assumed to be a flux

surface, the appropriate boundary conditions are:

ψ[r0(θ), θ] = ψo = const. (15a)

ψ[ri(θ), θ] = ψi = const. (15b)

Varying the value of ψi −ψo is equivalent to varying the value of β, as

discussed in more detail in section IV. One of these parameters (e.g.

ψi) can be set arbitrarily, and is kept fixed at the vacuum value.

In order to calculate the equilibrium β limit, it is now neces-

sary to choose a meaningful definition of β. Intuitively, the local

β = 2µ0p(r)/B(r)2 is not a convenient definition for the present prob-

lem. The reason is that the local β always diverges at the equilibrium

limit, since the magnetic field vanishes. Therefore, the local β con-

tains no information about the total amount of plasma pressure that

can be confined before reaching the equilibrium limit. A more mean-

ingful definition is global in nature, similar to the definition for the
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cylindrical case of equation (6):

β̄ = 2µ0
p̄

B̄2
, (16)

with

p̄ =
1
V

∫
pdr, B̄ =

1
L

∮
Bd`. (17)

Note that the volume integral is computed over the plasma volume,

while the line integral is evaluated over the outer plasma boundary r =

r0(θ). Also, V is the plasma volume, and L is the poloidal perimeter

of the outer boundary surface. The global β is indicated with the

symbol β̄ to distinguish it from the local β.

We observe that different definitions of a global β (e.g. ratio be-

tween plasma stored energy and field stored energy) are possible and

used in the literature. A different definition of β would produce differ-

ent numerical values, but maintain the same general behavior of the

equilibrium limit. Our choice, expressed by Eq. (16) is motivated by

the fact that Eq. (16) is the natural extension to a toroidal system of

the cylindrical definition in Eq. (6).

Equilibrium β̄ limit results are discussed in the next sections.

IV. Equilibrium β̄ limits for a static

plasma

The procedure for determining equilibrium limits in an isotropic plasma

with zero flow [modeled by Eq. (7a)] is as follows. The first step con-

sists of choosing a plausible profile for p(ψ), which must vanish on the
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inner tangent surface ψ = ψi and decay sufficiently gradually in the

outer low pressure region such that pV γ → const.

Implementation of the outer constraint requires a knowledge of the

relationship between V and ψ. This result is ascertained by noting

that in this region the field is accurately approximated by a vacuum

field. A simple analytic estimate, supported by a straightforward nu-

merical calculation shows that for a vacuum field V ≈ K/ψ4 as ψ → 0

for large R (using our normalization constant for the flux).

An additional experimental constraint is given by the plasma pres-

sure on the wall, which is set by its material properties. It cannot be

too large, or else the thermal load on the wall and the energy losses

of the plasma are too large.

Combining these constraints leads to the following plausible choice

for p(ψ):

p(ψ) = p0

(
1 − ψ

ψi

)2 (
ψ

ψi

)4γ

. (18)

The value p0 is a derived quantity obtained as follows:

p0 =
pw(

ψo

ψi

)4γ (
1 − ψo

ψi

)2 . (19)

The value pw = 12 [Pa] is a typical acceptable wall pressure and is

a fixed input for all the numerical simulations. This leaves ψo as the

only free quantity, which controls the value of p0 and therefore β. It

is intuitive from equation (19) that when ψo → 0 the value of p0 → ∞

implying that β → ∞. The numerical problem of determining the

equilibrium limit thus reduces to the problem of finding the minimum

ψo for which the equilibrium solution exists.
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The equilibrium β̄ limit is determined by running FLOW with

the same profile for the input p(ψ), but increasing the constant p0 in

equation (18) by decreasing ψo until the poloidal field value inside the

field “dip” approaches 0. The equilibrium limit is defined by the value

of p0 for which the minimum of the field is exactly 0. In practice,

because of numerical limitations the equilibrium limit is determined

by the value of p0 (and hence β̄) for which the minimum field is . 0.1%

of the field on the outboard side of the coil along the midplane.

The results of a typical set of calculations for the equilibrium limit

for a static plasma with the pressure profile given by Eq. (18) are

illustrated in Fig. 4, which shows the magnetic field profile along the

midplane in the outer part of the plasma (outboard side of the coil)

for different values of β̄. It is clear that as the pressure increases the

field minimum becomes smaller, until the equilibrium limit is reached

for a value of β̄ ' 4.6%.

Observe that the β̄ limit is much lower than for the cylindrical

case (i.e. β̄ = 0.89). There are two reasons for such a considerable

difference. The first is associated with the pressure profile. Because of

the effect of toroidal geometry on the dependence of V (ψ) on ψ (i.e.

V ∝ 1/ψ4), the pressure profile decays much more rapidly for large

R in the toroidal case. Second, there is a large penalty on the value

of β̄ due to the geometry, since the low-pressure regions have a larger

weight in the average than they would in the cylindrical case. The β̄

limit can be increased by changing the pressure profile, in particular by

generalizing the factor (1−ψ/ψi)2 → (1−ψ/ψi)α and choosing α > 2.
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Even so the overall increase in β̄ is not too large and the original

conclusions remain valid. The value α = 2 is used in the calculations

as this produces a pressure maximum at R ≈ 0.7m, which is consistent

with the experimental operation of LDX.

The overall conclusion is that an equilibrium β̄ limit exists in a

torus which is qualitatively similar to that in a cylinder. However,

quantitatively the toroidal β̄ limit is much smaller, by an order of

magnitude, because of toroidal geometric effects.

The effect of toroidal rotation is considered next.

V. Equilibrium limits in the presence

of toroidal flow

Many fusion experiments exhibit a substantial toroidal flow velocity.

Sometimes these flows are externally driven, for instance by neutral

beams. Often times the flows arise spontaneously with, at present,

no first principles explanation. In any event, the likely presence of

a toroidal flow in LDX may lead to a significant reduction in the

equilibrium β̄ limit. The reason is that a given poloidal magnetic

field must confine both the particle pressure gradient force and the

centrifugal force. Thus, a smaller fraction of the magnetic field is

available to provide pressure balance and this leads to a reduction in

the β̄ limit.

The effect of toroidal flow on the β̄ limit in LDX is the subject

of this section. The approach taken is to start with a static equilib-
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rium as described in the previous section and then slowly increase the

flow velocity until the equilibrium limit is reached. Specifically, the

starting static profile corresponds to a plasma pressure equivalent to

β̄ = 0.43β̄max where β̄max = 0.046 is the static limit. The aim of the

calculation is to determine how large the flow velocity must become to

reach the equilibrium limit; that is, we want to calculate Mϕ = mϕ(β̄)

for β̄ = 0.43β̄max where Mϕ =
[
ΩR/(γp/ρ)1/2

]
max

is the maximum

value of the thermal Mach number along the mid-plane Z = 0. The

simulations are carried with the following choices for the free func-

tions. The quasi pressure is given by its static form P (Ψ) = pstatic(Ψ)

in Eq. (18). For simplicity, the quasi density function is chosen as a

simple power law expression:

D(ψ) = Dw + (Dmax − Dw)

√
ψ − ψo

ψi − ψo
. (20)

Here, the density is a monotonically decreasing function of distance

away from the levitation coil with Dmax representing the coil density

and Dw representing the outer wall density. Simulations using various

density profiles, but holding Dmax, Dw fixed indicate only a weak

sensitivity to the profile shape.

Two choices are used for the flow velocity profile. These are

illustrated in Fig. 5. The first profile (solid curve) is peaked near the

pressure maximum. The second profile (dashed curve) is peaked well

beyond the pressure maximum. The results of the simulations are as

follows.

For the first velocity profile, curves of |B| vs. R are illustrated in

Fig. 6 for various values of Mϕ. Note that as the velocity increases,
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the minimum value of |B| decreases. We see that when the pressure

and velocity peak near the same radius, a modest value of Mach num-

ber, Mϕ ≈ 0.4, is sufficient to reach the equilibrium limit. At the limit

we find β̄ = 0.77β̄max (and not β̄ = 0.43β̄max). The reason for this

difference is that it is the quasi pressure function P (Ψ) that is held

fixed as the rotation is increased. The actual pressure is not a flux

function when the flow is non-zero, and thus the value of β̄ can and

does change as the flow velocity is increased. The net result is that

modest flow velocities peaked near the pressure maximum can lead to

substantial reductions in the equilibrium β̄ limit.

Consider now the second velocity profile. The simulations show

that much higher peak flow velocities can be achieved without reaching

the equilibrium limit. The reason is that the full magnetic field is

effectively available to confine both the pressure gradient force and

the centrifugal force since they peak at very different locations. There

is no need to apportion the field at a single location as is required when

the peaks overlap. Curves of |B| vs. R are illustrated in Fig. 7 for a

high flow and a static equilibrium for the case where β̄ = 0.43β̄max

for no flow. Observe that the solid curve has not yet reached the

equilibrium limit even though its corresponding Mϕ ≈ 1.5, a much

higher value than is possible when the peaks overlap. The conclusion

is that a velocity profile peaked far from the pressure peak is capable of

driving the system to its equilibrium limit, although very high values

of Mϕ would be required to do so.

As a final comment to this section, it is concluded that very high
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rotations could in principle take the LDX plasma to an equilibrium

limit. More importantly, even slower rotations can have a significant

effect on the equilibrium limit, if they are localized close to the pressure

peak. For that reason, determining the rotation profile will be of

considerable importance for the experimental operation of LDX, if

the plasma pressure is increased to values of the order of the static

equilibrium limit.

VI. The effect of pressure anisotropy

The LDX experiment is heated by electron cyclotron waves. Such

waves preferentially provide heat to the perpendicular particle pres-

sure, thereby producing an anisotropic plasma. The effect is particu-

larly pronounced in the early LDX experiments where the levitation

coil is actually held in place by mechanical supports. The resulting

plasma density is low which limits the ability of Coulomb collisions to

isotropize the pressure. Even when the coil is levitated, there is still

likely to be a substantial anisotropy, since the heating will still occur

in an anisotropic fashion. The anisotropy level will depend on the ra-

tio between the pitch angle scatter time and the particle confinement

time.

The brief discussion just presented motivates the simulations de-

scribed in this section which attempt to determine the effects of anisotropy

on the equilibrium β̄ limit. The simulations assume a zero toroidal

flow velocity and an anisotropy characterized by p⊥ > p‖. The free
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functions chosen for the simulations are given by:

T‖(Ψ) = mip0(Ψ)/D(Ψ),

D(ψ) = Dw + (Dmax − Dw)

√
ψ − ψo

ψi − ψo
,

B0(Ψ) = B̂0 = const.,

Θ(Ψ) = Θ0exp

[
−αΘ

(
Ψ − Ψmax

Ψ̄

)2
]

,

(21)

where p0(Ψ) is the static, isotropic pressure profile, given by Eq. (18),

Ψmax is the value of Ψ for which p0(Ψ) is maximum, and Ψ̄ is defined

as max(|Ψmax − Ψi|, |Ψmax − Ψo|). Note that in the isotropic limit

Θ = 0, the pressure reduces to

p(Ψ) = T‖(Ψ)D(Ψ)/mi = p0(Ψ), (22)

the standard form given by Eq. (18) (mi is the ion mass). A slightly

subtle point needs to be considered in the definition of the free function

Θ(Ψ). For the ratio T⊥/T‖ to remain finite near the equilibrium limit,

the function Θ(Ψ) must approach zero at least at the same rate that

B(R,Z) approaches zero. See Eq. (13). The requirement can be

satisfied in different ways, but we find expedient to assign Θ(Ψ) to

be effectively zero everywhere (and in particular near the minimum of

|B|) except around the pressure maximum. That is obtained through

the exponential decay in Eq. (21), assigning αΘ = 20. The level of

anisotropy is varied by choosing different values for Θ0.

The simulations are carried out as follows. The starting point is

a reference case corresponding to isotropic pressure (i.e. p = p0(Ψ),

Θ = 0). Anisotropy is introduced in a series of equilibria by slowly
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increasing the magnitude of Θ0. For these simulations the free func-

tions T‖(Ψ), D(Ψ), and B0(Ψ) are held fixed. This choice leaves the

parallel pressure essentially unchanged as the anisotropy is increased.

It is not exactly unchanged since it is D(Ψ) that is fixed and not the

density ρ, which is not a flux function in the presence of anisotropy, as

expressed by Eq. (12). For each equilibrium the value of β̄, defined as

β̄ =
(
β̄‖ + 2β̄⊥

)
/3, is calculated along with the corresponding value of

|Bmin|. A fair comparison with the isotropic case is made as follows.

For the isotropic case the amplitude of the pressure p0(Ψ) is rescaled

and the solution recomputed so that the resulting isotropic value of β̄

is identical to the anisotropic value. Also, the new rescaled value of

|Bmin| is recalculated.

The effects of anisotropy can then be determined by comparing

the values of Bmin as a function of Θ0 at fixed β̄. The lower the value

of Bmin the closer the configuration is to the equilibrium limit. Two

curves of |B| vs. R for an isotropic and an anisotropic equilibrium

with β̄ = 0.43β̄max are shown in Fig. 8. Note that anisotropy raises

Bmin, and therefore the critical equilibrium β̄ limit. However, even

for substantial anisotropy ((p⊥/p‖)max ≈ 1.44), the change in Bmin is

small implying only a small change in the actual equilibrium β̄ limit.

VII. Conclusions

The equilibrium pressure limits of a dipole configuration, with partic-

ular emphasis on the Levitated Dipole Experiment LDX, have been
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examined in the present work. The equilibrium limit is reached when

the plasma pressure becomes so large in a region of the plasma that it

completely expels the magnetic field, leading to a loss of confinement.

An isotropic, static plasma was considered first, showing that for re-

alistic pressure profiles the equilibrium limit is reached for values of

β̄ of approximately 4.6%, where β̄ is the ratio between the average

plasma and magnetic pressure defined in equation (16). Toroidal ro-

tation, which could play a role in LDX experiments, has been showed

to substantially affect the equilibrium limit if the rotation is peaked

in the proximity of the pressure peak. For such profiles, even strongly

subsonic flows (Mϕ ' 0.4) considerably reduce the equilibrium limit.

On the other hand, a rotation on the order of the plasma sound speed

is necessary in order to influence the equilibrium limit in the same

measure if the flow is localized away from the pressure peak. Lastly,

due to the heating mechanism in LDX, some anisotropy could also

be present in the equilibrium, but that does not seem to affect the

equilibrium limit in the range of anisotropies examined in this work.

All the results presented in this work have been obtained assuming

a specific pressure profile, with a single peak. Different profiles with

a single peak would produce different numerical results, but similar

physics. The effect of multiple pressure peaks in the equilibrium will

be considered in future work.

In conclusion, we have demonstrated the existence of an equilib-

rium pressure limit for a dipole configuration, which significantly con-

strains the maximum amount of plasma pressure that can be confined.
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