864 research outputs found

    In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography

    Get PDF
    Background and aims: Positron emission tomography (PET) using 18F labelled 2-fluoro-2-deoxy-D-glucose (18FDG) is an established imaging tool, although the recent development of a biologically stable thymidine analogue [18F] 3'-deoxy-3-fluorothymidine (18FLT) has allowed PET to image cellular proliferation by utilising the salvage pathway of DNA synthesis. In this study, we have compared uptake of 18FLT and 18FDG with MIB-1 immunohistochemistry to evaluate the role of PET in quantifying in vivo cellular proliferation in colorectal cancer (CRC). Patients and methods: Patients with resectable, primary, or recurrent CRC were prospectively studied. Thirteen lesions from 10 patients (five males, five females), median age 68 years (range 54–87), were evaluated. Patients underwent 18FDG and 18FLT PET scanning. Tracer uptake within lesions was quantified using standardised uptake values (SUVs). Histopathological examination and MIB-1 immunohistochemistry were performed on all lesions, and proliferation quantified by calculating a labelling index (% of MIB-1 positively stained nuclei within 1500 tumour cells). Results: Histology confirmed adenocarcinoma in 12 of 13 lesions; the remaining lesion was reactive. All eight extrahepatic lesions were visualised using both 18FLT and 18FDG. Three of the five resected liver metastases were also avid for 18FLT and showed high proliferation, while the remaining two lesions which demonstrated no uptake of 18FLT had correspondingly very low proliferation. There was a statistically significant positive correlation (r =0.8, p<0.01) between SUVs of the tumours visualised with 18FLT and the corresponding MIB-1 labelling indices. No such correlation was demonstrated with 18FDG avid lesions (r =0.4). Conclusions: 18FLT PET correlates with cellular proliferation markers in both primary and metastatic CRC. This technique could provide a mechanism for in vivo grading of malignancy and early prediction of response to adjuvant chemotherapy

    Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich 132^{132}Sn on 64^{64}Ni

    Full text link
    Evaporation residue cross sections have been measured with neutron-rich radioactive 132^{132}Sn beams on 64^{64}Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2×1042\times 10^{4} particles per second and the smallest cross section measured was less than 5 mb. Large subbarrier fusion enhancement was observed. Coupled-channels calculations taking into account inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure

    Sex change in plants: Old and new observations and new hypotheses

    Get PDF
    Evidence is presented that individuals of a large number of dioecious and subdioecious plant species are able to alter their sexual state in response to changes in the ambient environment and/or changes in size or age. We suggest that lability of sexual expression probably has survival value where a significant portion of the females must otherwise bear the cost of fruit production in unfavorable environments. We demonstrate that in patchy environments of the proper scale and variability in quality, labile sexual expression will enhance an individuals genetic contribution to the next generation

    How to extract reliable core-volume fractions from core-shell polycrystalline microstructures using cross sectional TEM micrographs

    Get PDF
    A reliable method of extracting core-volume fraction from TEM micrographs of core-shell polycrystalline microstructures is presented. Three commonly used averaging methods based on a simple spherical model are shown to consistently underestimate the core-volume fraction due to the interpretation of a 3D structure from a 2D slice. The same trend is also revealed using Voronoi tessellated structures to mimic polycrystalline ceramics. In some cases the underestimate is less than half the true core-volume fraction. We show that using a new maximum core-volume fraction methodology can improve the extracted value to a consistent error of less than 5%. This approach uses a value taken from the largest core-volume fraction measured from 10 grains that exhibit a core-shell microstructure. This provides increasing accuracy and improvements in the confidence of the measurement when extracting core-volume fractions of polycrystalline ceramics from 2D TEM micrographs

    Using metadynamics to obtain the free energy landscape for cation diffusion in functional ceramics : dopant distribution control in rare earth-doped BaTiO3

    Get PDF
    Barium titanate is the dielectric material of choice in most multilayer ceramic capacitors (MLCCs) and thus in the production of ≈3 trillion devices every year, with an estimated global market of ≈$8330 million per year. Rare earth dopants are regularly used to reduce leakage currents and improve the MLCC lifetime. Simulations are used to investigate the ability of yttrium, dysprosium, and gadolinium to reduce leakage currents by trapping mobile oxygen defects. All the rare earths investigated trap oxygen vacancies, however, dopant pairs are more effective traps than isolated dopants. The number of trapping sites increases with the ion size of the dopant, suggesting that gadolinium should be more effective than dysprosium, which contradicts experimental data. Additional simulations on diffusion of rare earths through the lattice during sintering show that dysprosium diffuses significantly faster than the other rare earths considered. As a consequence, its greater ability to reduce oxygen migration is a combination of thermodynamics (a strong ability to trap oxygen vacancies) and kinetics (sufficient distribution of the rare earth in the lattice to intercept the migrating defects)

    Why do we need a theory and metrics of technology upgrading?

    Get PDF
    This paper discusses why we need theory and metrics of technology upgrading. It critically reviews the existing approaches to technology upgrading and motivates build-up of theoretically relevant but empirically grounded middle level conceptual and statistical framework which could illuminate a type of challenges relevant for economies at different income levels. It conceptualizes technology upgrading as three dimensional processes composed of intensity and different types of technology upgrading through various types of innovation and technology activities; broadening of technology upgrading through different forms of technology and knowledge diversification, and interaction with global economy through knowledge import, adoption and exchange. We consider this to be necessary first step towards theory and metrics of technology upgrading and generation of more relevant composite indicator of technology upgrading

    A-Site Strain and Displacement in Ba1-xCaxTiO3 and Ba1-xSrxTiO3 and the Consequences for the Curie Temperature

    Get PDF
    Classical computer simulations are performed on the whole solid solution range of Ba1–xCaxTiO3 (BCT) and Ba1–xSrxTiO3 (BST). The enthalpies and volumes of mixing are produced, and a full local structural analysis is performed. The simulations demonstrate that large degrees of disorder form in the BCT solid solution which leads to distortions in the TiO6 octahedra. Comparing the positions of Sr in BST and Ca in BCT, the position of the Sr cation is largely central within the dodecahedra while the position of the Ca is significantly off-center in many configurations. The relaxation is associated with a shift toward an eight coordinate site compared to a 12 coordinate cation. An empirical model is fitted for predicting the Curie Temperature of the solid solution based on the local structure which shows excellent agreement with experimental values

    Tuning the electrical conductivity of Rare Earth-doped BaTiO3 using Gd2O3 as an exemplar

    Get PDF
    The electrical properties of Gd-doped BaTiO3 ceramics prepared by various doping mechanisms have been investigated using Impedance Spectroscopy and correlated with the proposed doping mechanisms observed from phase diagram studies and with solution energies obtained from atomistic simulations. Undoped BaTiO3, BaTi1-xGdxO3-x/2, Ba1-y/2Ti1-y/2GdyO3 and Ba1-zGdzTi1-z/4O3 were prepared. The first two series and y < 0.10 samples possess extrinsic p-type conduction due to oxygen gain (oxidation) associated with the presence of oxygen vacancies. A core-shell microstructure causes electrical heterogeneity where y < 0.10. For y ≥ 0.10, oxygen vacancies are eliminated by substitution of a small excess of Gd3+ at the Ba-site leading to intrinsic (band-type) conduction. All Ba1-zGdzTi1-z/4O3 ceramics processed in air exhibit n-type semiconductivity that is attributed to a small amount of oxygen loss (reduction) during sintering. The oxygen loss can be prevented by processing ceramics in a flowing O2 atmosphere

    Understanding the structure-dielectric property relationships of (Ba0.8Ca0.2)TiO3-Bi(Mg0.5Ti0.5)O3 perovskites

    Get PDF
    Atomic-level simulations are used to examine the structure, thermodynamics, and dielectric properties of (Ba0.8Ca0.2)TiO3-Bi(Mg0.5Ti0.5)O3 perovskites. These simulations demonstrate that mixing is non-ideal between the end-members, and only specific configurations can form at higher Bi(Mg0.5Ti0.5)O3 content. Significant structural relaxations are identified around the Bi and Mg cations. The effect of these relaxations on polarization is investigated and highlights that they disrupt ferroelectric domains in the material, preventing collective polarization mechanisms that links to the experimentally observed relatively flat permittivity-temperature profile

    Institutional experience with a rotational total skin electron irradiation (RTSEI) technique—A three decade review (1981–2012)

    Get PDF
    Total skin electron irradiation (TSEI) for patients with cutaneous lymphomas is technically challenging, and numerous approaches have been developed to overcome the many field matching problems associated with such a large and complex treatment volume. Since 1981 we have delivered TSEI using a rotational total skin electron irradiation (RTSEI) technique in conjunction with patch, treat and boost fields in order to provide complete skin and dose coverage. Initially we used a 6[[ce:hsp sp="0.25"/]]MeV electron beam at an extended source-skin distance (SSD) on a modified linear accelerator. More recently we began using a high dose rate electron mode on a commercially available linear accelerator. The RTSEI technique allows the delivery of a seamless surface dose to the majority of the patient's skin surface in a single treatment. In this review paper we present our three-decade experience with the technical development, dosimetry, treatment delivery and clinical outcomes of our RTSEI technique
    corecore