1,724 research outputs found

    A unified approach for composite cost reporting and prediction in the ACT program

    Get PDF
    The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed

    Cost-efficient manufacturing of composite structures

    Get PDF
    The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed

    Auditory compensation for head rotation is incomplete

    Get PDF
    Hearing is confronted by a similar problem to vision when the observer moves. The image motion that is created remains ambiguous until the observer knows the velocity of eye and/or head. One way the visual system solves this problem is to use motor commands, proprioception and vestibular information. These ‘extra-retinal signals’ compensate for self movement, converting image motion into head-centred coordinates, though not always perfectly. We investigated whether the auditory system also transforms coordinates by examining the degree of compensation for head rotation when judging a moving sound. Real-time recordings of head motion were used to change the ‘movement gain’ relating head movement to source movement across a loudspeaker array. We then determined psychophysically the gain that corresponded to a perceptually-stationary source. Experiment 1 showed that the gain was small and positive for a wide range of trained head speeds. Hence listeners perceived a stationary source as moving slightly opposite to the head rotation, in much the same way that observers see stationary visual objects move against a smooth pursuit eye movement. Experiment 2 showed the degree of compensation remained the same for sounds presented at different azimuths, although the precision of performance declined when the sound was eccentric. We discuss two possible explanations for incomplete compensation, one based on differences in the accuracy of signals encoding image motion and self-movement, and one concerning statistical optimisation that sacrifices accuracy for precision. We then consider the degree to which such explanations can be applied to auditory motion perception in moving listeners

    Visualisation of BioPAX Networks using BioLayout Express (3D).

    Get PDF
    BioLayout Express (3D) is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an 'Advanced' query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools

    Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis

    Get PDF
    It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behaviour, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15), and sought to determine their gene signatures and thereby provide potential functional annotations for as yet poorly characterized genes. To identify cell type populations we examined the cell-to-cell network based on the similarity of the single-cells’ transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 15 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene co-expression analysis. We combined this analysis with literature mining, the honey bee protein atlas and Gene Ontology analysis to determine cell cluster identity. Of the cell clusters identified, 9 were related to the nervous system, 7 to the fat body, 14 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology of at the cellular level

    Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators

    Get PDF
    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables-LPS dose, LPS versus IFN-beta and -gamma, and genetic background-on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-gamma signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli

    Effects of anti-inflammatory drugs on the expression of tryptophan-metabolism genes by human macrophages.

    Get PDF
    Several lines of evidence link macrophage activation and inflammation with (monoaminergic) nervous systems in the etiology of depression. IFN treatment is associated with depressive symptoms, whereas anti-TNFα therapies elicit positive mood. This study describes the actions of 2 monoaminergic antidepressants (escitalopram, nortriptyline) and 3 anti-inflammatory drugs (indomethacin, prednisolone, and anti-TNFα antibody) on the response of human monocyte-derived macrophages (MDMs) from 6 individuals to LPS or IFN-α. Expression profiling revealed robust changes in the MDM transcriptome (3294 genes at P < 0.001) following LPS challenge, whereas a more limited subset of genes (499) responded to IFNα. Contrary to published reports, administered at nontoxic doses, neither monoaminergic antidepressant significantly modulated the transcriptional response to either inflammatory challenge. Each anti-inflammatory drug had a distinct impact on the expression of inflammatory cytokines and on the profile of inducible gene expression-notably on the regulation of enzymes involved in metabolism of tryptophan. Inter alia, the effect of anti-TNFα antibody confirmed a predicted autocrine stimulatory loop in human macrophages. The transcriptional changes were predictive of tryptophan availability and kynurenine synthesis, as analyzed by targeted metabolomic studies on cellular supernatants. We suggest that inflammatory processes in the brain or periphery could impact on depression by altering the availability of tryptophan for serotonin synthesis and/or by increasing production of neurotoxic kynurenine

    Visualization and analysis of RNA-Seq assembly graphs.

    Get PDF
    RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity

    A novel SNP-based tool for estimating C-lineage introgression in the dark honey bee (Apis mellifera mellifera)

    Get PDF
    The natural distribution ofthe honeybee (Apis mellifera L.) hás been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apís mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained forthe fourassays combined (117 SNPs). The best compromise between accuracy ana genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression leveis to more effectively monitor and manage A. m. mellífera conservatories.info:eu-repo/semantics/publishedVersio

    The polaroid image as photo-object

    Get PDF
    This article is part of a larger project on the cultural history of Polaroid photography and draws on research done at the Polaroid Corporate archive at Harvard and at the Polaroid company itself. It identifies two cultural practices engendered by Polaroid photography, which, at the point of its extinction, has briefly flared into visibility again. It argues that these practices are mistaken as novel but are in fact rediscoveries of practices that stretch back as many as five decades. The first section identifies Polaroid image-making as a photographic equivalent of what Tom Gunning calls the ‘cinema of attractions’. That is, the emphasis in its use is on the display of photographic technologies rather than the resultant image. Equally, the common practice, in both fine art and vernacular circles, of making composite pictures with Polaroid prints, draws attention from image content and redirects it to the photo as object
    • …
    corecore