2,255 research outputs found

    Sc2Ga2CuO7: A possible quantum spin liquid near the percolation threshold

    Get PDF
    Sc2Ga2CuO7 (SGCO) crystallizes in a hexagonal structure (space group: P63/mmc), which can be seen as an alternating stacking of single and double triangular layers. Combining neutron, x-ray, and resonant x-ray diffraction we establish that the single triangular layers are mainly populated by non-magnetic Ga3+ ions (85% Ga and 15% Cu), while the bi-layers have comparable population of Cu2+ and Ga3+ ions (43% Cu and 57% Ga). Our susceptibility measurements in the temperature range 1.8 - 400 K give no indication of any spin-freezing or magnetic long-range order (LRO).We infer an effective paramagnetic moment μeff = 1.79±0.09 μB and a Curie-Weiss temperature �CW of about −44 K, suggesting antiferromagnetic interactions between the Cu2+(S = 1/2) ions. Low-temperature neutron powder diffraction data showed no evidence for LRO down to 1.5 K. In our specific heat data as well, no anomalies were found down to 0.35 K, in the field range 0-140 kOe. The magnetic specific heat, Cm, exhibits a broad maximum at around 2.5 K followed by a nearly power law Cm/ T� behavior at lower temperatures, with � increasing from 0.3 to 1.9 as a function of field for fields upto 90 kOe and then remaining at 1.9 for fields upto 140 kOe. Our results point to a disordered ground state in SGCO

    Magnetic excitations of the charge stripe electrons below half doping in La2−xSrxNiO4 (x = 0.45, 0.4)

    Get PDF
    The low energy magnetic excitation spectrum of charge stripe ordered La2−xSrxNiO4, x = 0.4 and x = 0.45 were studied by neutron scattering. Two excitation modes are observed in both materials, one from the ordered magnetic moments, and a second mode consistent with pseudo-onedimensional antiferromagnetic excitations of the charge stripe electrons (q-1D). The dispersion of the q-1D excitation follows the same relation as in x = 1/3 composition, with even spectral weight in the two counter-propagating branches of the x = 0.4, however in the x = 0.45 only one dispersion branch has any measurable spectral weight. The evolution of the q-1D excitations on doping to the checkerboard charge ordered phase is discussed

    Stability of charge-stripe ordered La2−xSrxNiO4+δ at one third doping

    Get PDF
    The stability of charge ordered phases is doping dependent, with different materials having particularly stable ordered phases. In the half filled charge ordered phases of the cuprates this occurs at one eighth doping, whereas in charge-stripe ordered La2−xSrxNiO4+δ there is enhanced stability at one third doping. In this paper we discuss the known details of the charge-stripe order in La2−xSrxNiO4+δ, and how these properties lead to the one third doping stability

    Endogenous production of IL-1B by breast cancer cells drives metastasis and colonisation of the bone microenvironment

    Get PDF
    Background: Breast cancer bone metastases are incurable highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL-1B by tumor cells drives metastasis and growth in bone. Methods: Tumor/stromal IL-B and IL-1R1 expression was assessed in patient samples and effects of the IL-1R antagonist, Anakinra or the IL-1B antibody Canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL-1B on bone colonisation and parameters associated with metastasis were measured in MDA-MB-231, MCF7 and T47D cells transfected with IL-1B/control. Results: In tissue samples from >1300 patients with stage II/III breast cancer, IL-1B in tumor cells correlated with relapse in bone (hazard ratio 1.85; 95% CI 1.05-3.26; P=0.02) and other sites (hazard ratio 2.09; 95% CI 1.26-3.48; P=0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or Canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL-1B by tumor cells promoted EMT (altered E-Cadherin, N-Cadherin and G-Catenin), invasion, migration and bone colonisation. Contact between tumor and osteoblasts or bone marrow cells increased IL-1B secretion from all three cell types. IL-1B alone did not stimulate tumor cell proliferation. Instead, IL-1B caused expansion of the bone metastatic niche leading to tumor proliferation. Conclusion: Pharmacological inhibition of IL-1B has potential as a novel treatment for breast cancer metastasis

    Origin of the Spin-Orbital Liquid State in a Nearly J=0 Iridate Ba3ZnIr2O9

    Get PDF
    We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5+ (5d(4)) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J = 0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK

    Communications Biophysics

    Get PDF
    Contains reports on ten research projects.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Training Grant 5 T32 NS0704)National Science Foundation (Grant BNS80-06369)National Institutes of Health (Grant 5 R01 NS11153)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 RO1 NS12846)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 1 P01 NS14092)Karmazin Foundation through the Council for the Arts at MITNational Institutes of Health (Fellowship 5 F32 NS06386)National Science Foundation (Fellowship SP179-14913)National Institutes of Health (Grant 5 RO1 NS11080

    Prototype of the novel CAMEA concept—A backend for neutron spectrometers

    Get PDF
    The continuous angle multiple energy analysis concept is a backend for both time-of-flight and analyzer-based neutron spectrometers optimized for neutron spectroscopy with highly efficient mapping in the horizontal scattering plane. The design employs a series of several upward scattering analyzer arcs placed behind each other, which are set to different final energies allowing a wide angular coverage with multiple energies recorded simultaneously. For validation of the concept and the model calculations, a prototype was installed at the Swiss neutron source SINQ, Paul Scherrer Institut. The design of the prototype, alignment and calibration procedures, experimental results of background measurements, and proof-of-concept inelastic measurements on LiHoF4 and h-YMnO3 are presented here

    Developing a Series of AI Challenges for the United States Department of the Air Force

    Full text link
    Through a series of federal initiatives and orders, the U.S. Government has been making a concerted effort to ensure American leadership in AI. These broad strategy documents have influenced organizations such as the United States Department of the Air Force (DAF). The DAF-MIT AI Accelerator is an initiative between the DAF and MIT to bridge the gap between AI researchers and DAF mission requirements. Several projects supported by the DAF-MIT AI Accelerator are developing public challenge problems that address numerous Federal AI research priorities. These challenges target priorities by making large, AI-ready datasets publicly available, incentivizing open-source solutions, and creating a demand signal for dual use technologies that can stimulate further research. In this article, we describe these public challenges being developed and how their application contributes to scientific advances

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on six research projects split into three sections.National Institutes of Health (Grant 5 P01 NS13126-07)National Institutes of Health (Training Grant 5 T32 NS07047-05)National Institutes of Health (Training Grant 2 T32 NS07047-06)National Science Foundation (Grant BNS 77-16861)National Institutes of Health (Grant 5 R01 NS1284606)National Institutes of Health (Grant 5 T32 NS07099)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 R01 NS14092-04)Gallaudet College SubcontractKarmazin Foundation through the Council for the Arts at M.I.T.National Institutes of Health (Grant 1 R01 NS1691701A1)National Institutes of Health (Grant 5 R01 NS11080-06)National Institutes of Health (Grant GM-21189
    corecore