73 research outputs found

    Rhythm and Randomness in Human Contact

    Full text link
    There is substantial interest in the effect of human mobility patterns on opportunistic communications. Inspired by recent work revisiting some of the early evidence for a L\'evy flight foraging strategy in animals, we analyse datasets on human contact from real world traces. By analysing the distribution of inter-contact times on different time scales and using different graphical forms, we find not only the highly skewed distributions of waiting times highlighted in previous studies but also clear circadian rhythm. The relative visibility of these two components depends strongly on which graphical form is adopted and the range of time scales. We use a simple model to reconstruct the observed behaviour and discuss the implications of this for forwarding efficiency

    Regional, seasonal, and inter-annual variations of Antarctic and sub-Antarctic temperature anomalies related to the Mansurov effect

    Get PDF
    We use National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data to show that Antarctic surface air temperature anomalies result from differences in the daily-mean duskward component, By, of the interplanetary magnetic field (IMF). We find the statistically-significant anomalies have strong geographical, seasonal, and inter-annual variations. For the interval 1999-2002, regional anomalies poleward of 60°S are of diminishing representative peak amplitude from autumn (3.2°C) to winter (2.4°C) to spring (1.6°C) to summer (0.9°C). Exploiting apparently simplifying properties in the sub-Antarctic region in autumn 1999-2002, we demonstrate that temperature anomalies in this case are due to geostrophic wind anomalies, resulting from the same By changes, moving air across large meridional gradients in zonal mean air temperature between 50 and 70°S over the 7-hour timescale for which a change in By can be expected to persist. Since the tropospheric pressure anomalies causing these winds have been associated with By-driven anomalies in the electric potential of the ionosphere, we conclude that IMF-induced changes to the global atmospheric electric circuit can cause day-to-day changes in regional surface air temperature of up to several degrees Centigrade

    Estimating the location of the open-closed magnetic field line boundary from auroral images

    Get PDF
    The open-closed magnetic field line boundary (OCB) delimits the region of open magnetic flux forming the polar cap in the Earth’s ionosphere. We present a reliable, automated method for determining the location of the poleward auroral luminosity boundary (PALB) from far ultraviolet (FUV) images of the aurora, which we use as a proxy for the OCB. This technique models latitudinal profiles of auroral luminosity as both a single and double Gaussian function with a quadratic background to produce estimates of the PALB without prior knowledge of the level of auroral activity or of the presence of bifurcation in the auroral oval. We have applied this technique to FUV images recorded by the IMAGE satellite from May 2000 until August 2002 to produce a database of over a million PALB location estimates, which is freely available to download. From this database, we assess and illustrate the accuracy and reliability of this technique during varying geomagnetic conditions. We find that up to 35% of our PALB estimates are made from double Gaussian fits to latitudinal intensity profiles, in preference to single Gaussian fits, in nightside magnetic local time (MLT) sectors. The accuracy of our PALBs as a proxy for the location of the OCB is evaluated by comparison with particle precipitation boundary (PPB) proxies from the DMSP satellites. We demonstrate the value of this technique in estimating the total rate of magnetic reconnection from the time variation of the polar cap area calculated from our OCB estimates

    Solar-wind-driven geopotential height anomalies originate in the Antarctic lower troposphere

    Get PDF
    We use National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data to estimate the altitude and time lag dependence of the correlation between the interplanetary magnetic field component, By, and the geopotential height anomaly above Antarctica. The correlation is most statistically significant within the troposphere. The peak in the correlation occurs at greater time lags at the tropopause (∼6–8 days) and in the midtroposphere (∼4 days) than in the lower troposphere (∼1 day). This supports a mechanism involving the action of the global atmospheric electric circuit, modified by variations in the solar wind, on lower tropospheric clouds. The increase in time lag with increasing altitude is consistent with the upward propagation by conventional atmospheric processes of the solar wind-induced variability in the lower troposphere. This is in contrast to the downward propagation of atmospheric effects to the lower troposphere from the stratosphere due to solar variability-driven mechanisms involving ultraviolet radiation or energetic particle precipitation

    A high-resolution model of the external and induced magnetic field at the Earth’s surface in the northern hemisphere

    Get PDF
    We describe a method of producing high-resolution models of the Earth’s combined external and induced magnetic field (EIMF) using the method of Empirical Orthogonal Functions (EOFs) applied to the SuperMAG archive of ground-based magnetometer data. EOFs partition the variance of a system into independent modes, allowing us to extract the spatiotemporal patterns of greatest dynamical importance without applying the a priori assumptions of other methods (such as spherical harmonic analysis, parameterised averaging, or multi-variate regression). We develop an approach based on that of Beckers and Rixen [2003] and use the EOF modes to infill missing data in a self-consistent manner. Applying our method to a north polar case study spanning February 2001 (chosen for its proximity to solar maximum and good data coverage), we demonstrate that 41.7% and 9.4% of variance is explained by the leading two modes, respectively describing the temporal variations of the Disturbance Polar types 2 and 1 (DP2 and DP1) patterns. A further 14.1% of variance is explained by four modes that describe separate aspects of the motion of the DP1 and DP2 systems. Thus, collectively over 65% of variance is described by the leading 6 modes and is attributable to DP1 and DP2. This attribution is based on inspection of the spatial morphology of the modes, and analysis of the temporal variation of the mode amplitudes with respect to solar wind measures and substorm occurrence. This study is primarily a demonstration of the technique and a prelude to a model spanning the full solar cycle

    Identifying the magnetotail lobes with Cluster magnetometer data

    Get PDF
    We describe a novel method for identifying times when a spacecraft is in Earth’s magnetotail lobes solely using magnetometer data. We propose that lobe intervals can be well identified as times when the magnetic field is strong and relatively invariant, defined using thresholds in the magnitude of BX and the standard deviation σ of the magnetic field magnitude. Using data from the Cluster spacecraft at downtail distances greater than 8 RE during 2001–2009, we find that thresholds of 30 nT and 3.5 nT, respectively, optimize agreement with a previous, independently derived lobe identification method that used both magnetic and plasma data over the same interval. Specifically, our method has a moderately high accuracy (66%) and a low probability of false detection (11%) in comparison to the other method. Furthermore, our method identifies the lobe on many other occasions when the previous method was unable to make any identification and yields longer continuous intervals in the lobe than the previous method, with intervals at the 90th percentile being triple the length. Our method also allows for analyses of the lobes outside the time span of the previous method

    Interplanetary magnetic field control of polar ionospheric equivalent current system modes

    Get PDF
    We analyse the response of different ionospheric equivalent current modes to variations in the interplanetary magnetic field (IMF) components By and Bz. Each mode comprises a fixed spatial pattern whose amplitude varies in time, identified by a month‐by‐month empirical orthogonal function separation of surface measured magnetic field variance. Here we focus on four sets of modes that have been previously identified as DPY, DP2, NBZ and DP1. We derive the cross‐correlation function of each mode set with either IMF By or Bz for lags ranging from ‐10 to +600 mins with respect to the IMF state at the bow shock nose. For all four sets of modes, the average correlation can be reproduced by a sum of up to three linear responses to the IMF component, each centered on a different lag. These are interpreted as the statistical ionospheric responses to magnetopause merging (15‐20 mins lag) and magnetotail reconnection (60 mins lag), and to IMF persistence. Of the mode sets, NBZ and DPY are the most predictable from a given IMF component, with DP1 (the substorm component) the least predictable. The proportion of mode variability explained by the IMF increases for the longer lags, thought to indicate conductivity feedbacks from substorms. In summary, we confirm the postulated physical basis of these modes and quantify their multiple reconfiguration timescales

    The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom

    Get PDF
    We investigate how statistical properties of the rate of change R of the surface horizontal magnetic field in the United Kingdom differ during substorm expansion and recovery phases compared with other times. R is calculated from 1‐min magnetic field data from three INTERMAGNET observatories—Lerwick, Eskdalemuir, and Hartland and between 1996 and 2014—nearly two solar cycles. Substorm expansion and recovery phases are identified from the SuperMAG Lower index using the Substorm Onsets and Phases from Indices of the Electrojet method. The probability distribution of R is decomposed into categories of whether during substorm expansion and recovery phases, in enhanced convection intervals, or at other times. From this, we find that 54–56% of all extreme R values (defined as above the 99.97th percentile) occur during substorm expansion or recovery phases. By similarly decomposing the magnetic local time variation of the occurrence of large R values (>99th percentile), we deduce that 21–25% of large R during substorm expansion and recovery phases are attributable to the Disturbance Polar (DP)1 magnetic perturbation caused by the substorm current wedge. This corresponds to 10–14% of all large R in the entire data set. These results, together with asymptotic trends in occurrence probabilities, may indicate the two‐cell DP2 magnetic perturbation caused by magnetospheric convection as the dominant source of hazardous R > 600 nT/min that is potentially damaging to the U.K. National Grid. Thus, further research is needed to understand and model DP2, its mesoscale turbulent structure, and substorm feedbacks in order that GIC impact on the National Grid may be better understood and predicted

    IMF-driven change to the Antarctic tropospheric temperature due to the global atmospheric electric circuit

    Get PDF
    We use National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data to investigate the Antarctic mean tropospheric temperature anomaly associated with changes in the dawn-dusk component By of the interplanetary magnetic field (IMF). We find that the mean tropospheric temperature anomaly for geographical latitudes ≤ −70° peaks at about 0.7 K and is statistically significant at the 5% level between air pressures of 1 000 and 500 hPa (∼0.1–5.6 km altitude above sea level) and for time lags with respect to the IMF of up to 7 days. The peak values of the air temperature anomaly occur at a greater time lag at 500 hPa (∼5.6 km) than at 1 000 - 600 hPa (∼0.1–4.2 km), which may indicate that the signature propagates vertically. The characteristics of prompt response and possible vertical propagation within the troposphere have previously been seen in the correlation between the IMF and high-latitude air pressure anomalies, known as the Mansurov effect, at higher statistical significances (1%). For time lags between the IMF and the troposphere of 0–6 days and altitudes between 1 000 and 700 hPa (∼0.1–3 km), the relationship between highly statistically significant (1% level) geopotential height anomaly values and the corresponding air temperature anomaly values is consistent with the standard lapse rate in atmospheric temperature. We conclude that we have identified the temperature signature of the Mansurov effect in the Antarctic troposphere. Since these tropospheric anomalies have been associated with By-driven anomalies in the electric potential of the ionosphere, we further conclude that they are caused by IMF-induced changes to the global atmospheric electric circuit (GEC). Our results support the view that variations in the ionospheric potential act on the troposphere, possibly via the action of consequent variations in the downwards current of the GEC on tropospheric clouds

    On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events

    Get PDF
    With the arrival of the Cassini spacecraft at Saturn in July 2004, there have been quasi-continuous observations of Saturn kilometric radiation (SKR) emissions. Exploration of the nightside magnetosphere has revealed evidence of plasmoid-like magnetic structures and other phenomena indicative of the Kronian equivalent of terrestrial substorms. In general, there is a good correlation between the timing of reconnection events and enhancements in the auroral SKR emission. Eight of nine reconnection events studied occur at SKR phases where the SKR power would be expected to be rising with time. Thus, while the recurrence rate of substorm-like events at Saturn is likely much longer than the planetary rotation timescale, the events are favored to occur at a particular phase of the rotation. We show three examples in each of which the SKR spectrum extends to lower frequencies than usual. This can be interpreted as an expansion of the auroral particle acceleration region to higher altitudes along magnetic field lines as a direct consequence of an increase in the magnetosphere-ionosphere current density driven by substorm-like events. We then conduct a survey of such low-frequency extensions during the equatorial orbits of 2005-2006 and place some constraints on visibility of these radio emissions
    corecore