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Abstract. We describe a method of producing high-resolution models

of the Earth’s combined external and induced magnetic field (EIMF) using

the method of Empirical Orthogonal Functions (EOFs) applied to the Su-

perMAG archive of ground-based magnetometer data. EOFs partition the

variance of a system into independent modes, allowing us to extract the spa-

tiotemporal patterns of greatest dynamical importance without applying the

a priori assumptions of other methods (such as spherical harmonic analy-

sis, parameterised averaging, or multi-variate regression). We develop an ap-

proach based on that of Beckers and Rixen [2003] and use the EOF modes

to infill missing data in a self-consistent manner. Applying our method to

a north polar case study spanning February 2001 (chosen for its proximity

to solar maximum and good data coverage), we demonstrate that 41.7% and

9.4% of variance is explained by the leading two modes, respectively describ-

ing the temporal variations of the Disturbance Polar types 2 and 1 (DP2 and

DP1) patterns. A further 14.1% of variance is explained by four modes that

describe separate aspects of the motion of the DP1 and DP2 systems. Thus,

collectively over 65% of variance is described by the leading 6 modes and is

attributable to DP1 and DP2. This attribution is based on inspection of the

spatial morphology of the modes, and analysis of the temporal variation of

the mode amplitudes with respect to solar wind measures and substorm oc-

currence. This study is primarily a demonstration of the technique and a pre-

lude to a model spanning the full solar cycle.
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1. Introduction

The magnetosphere and ionosphere are host to electrical current systems which are

highly variable in space and across a wide range of time scales, ultimately driven by so-

lar disturbances that wax and wane with an 11-year cycle and the associated turbulent

interplanetary medium [e.g. Baumjohann and Treumann, 1997; Schunk and Nagy , 2009].

The cumulative magnetic field from these source currents is referred to as the external

magnetic field, which contributes to all magnetic field measurements made at and above

the Earth’s surface.

Variations in the external magnetic field induce currents in the Earth’s crust, mantle

and oceans, which create an additional contribution to the surface magnetic field. The

surface external and induced magnetic field (EIMF) represents one of the largest sources

of correlated error in state-of-the-art efforts to model the Earth’s magnetic environment,

such as the International Geomagnetic Reference Field [IGRF; Thébault et al., 2015] and

Comprehensive Models [Sabaka et al., 2015]. Since the surface EIMF is most variable

throughout the polar regions, these areas are represented with disproportionate inaccu-

racy in magnetic models. Variability in the external magnetic field is also responsible for

geomagnetically induced currents in man-made conducting infrastructure, notably elec-

trical power grids, which can be a nuisance or hazard [Thomson et al., 2010].

From decades of study, it has been deduced that the polar EIMF can be decomposed

into two main patterns the Disturbance Polar (DP) 1 and 2 patterns [Nishida, 1968a],
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along with other contributions including the Solar-quiet [Sq; Matsushita et al., 1973],

DPY [Friis-Christensen and Wilhjelm, 1975], and NBZ patterns [e.g. Maezawa, 1976;

Iijima et al., 1984].

Traditionally, an EIMF pattern is presented in terms of equivalent current, which is the

ionospheric current confined within a spherical surface at around 100 km altitude that

would create the EIMF, or even more simply the corresponding overhead uniform plane

current (i.e., 90◦ clockwise to the local EIMF). We shall use this concept here too. Under

conditions of uniform conductivity and vertical magnetic field, the equivalent current cor-

responds to the actual Hall current [Fukushima, 1969]. Otherwise, additional information

on the Hall and Pedersen conductivities, electric field, or magnetic field-aligned current

(FAC) is required to identify the source currents [e.g. Friis-Christensen et al., 1985; Laun-

dal et al., 2015].

The DP2 pattern is a two-cell current pattern with relatively intense eastward and

westward equivalent currents in the afternoon and morning magnetic local time (MLT)

sectors, respectively. It is highly correlated at short (approximately 10 min) time lag

with the southward component (Bz) of the interplanetary magnetic field (IMF) [Nishida,

1968b] and forms due to the interaction of the IMF and geomagnetic field as the solar wind

moves anti-sunward past the Earth. This interaction – involving magnetic reconnection

at the magnetopause and in the magnetotail – imposes a horizontal electric field in the

polar ionosphere [Dungey , 1961]. This drives Pedersen currents which close region 1 and

2 FACs across auroral zone, and (dependent on ambient conductivity) the region 1 FACs
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across the polar cap [Laundal et al., 2015, 2016].

The DP1 pattern predominantly comprises an intense westward equivalent current

across the midnight MLT sector. It is associated with a current wedge formed by the

diversion of the cross-magnetotail current into the ionosphere at the onset of a substorm

[McPherron et al., 1973]. Consequently it has a weak correlation with IMF Bz due to the

fact that substorm onset timing has a complicated (time-integrated) relationship with the

IMF [Freeman and Morley , 2004].

In this paper, we describe a method for obtaining a high-resolution model of the surface

EIMF, and demonstrate it in the north polar region. We utilise a mathematical technique

commonly employed in meteorology, called Empirical Orthogonal Functions (EOFs), to

identify the natural time-varying patterns of the EIMF – its modes of variability. The

EOF method is an eigenanalysis of the variance of a data set, designed to decompose it

into a small number of independent spatial patterns and associated temporal oscillations

[Jolliffe, 2002]. The EIMF is a system characterised by high variance (in both space and

time), which lends itself to description by EOFs.

The primary benefit of EOF analysis is that it is able to describe the spatial and tem-

poral morphology of the EIMF without applying strong a priori assumptions of these

morphologies. This is in contrast to the two other methods typically used in geomag-

netic field analysis. Firstly, spherical harmonic analysis (SHA) assumes both a priori

coordinate system and pattern geometry. SHA is commonly used in internal (and com-
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prehensive) magnetic field models since it adeptly resolves the dipole-dominated, slowly

varying internal field. To reduce the number of parameters required to resolve the more

rapidly-varying external field, these contributions can be described in a range of inertial

coordinate systems of varying spatial or temporal complexity [e.g. CM5; Sabaka et al.,

2015]. The choice of coordinate system can lead to a systematic loss of signal in the SHA

model [e.g. demonstrated by Macmillan and Olsen, 2013], exacerbated by the low degree

and order terms used to describe external variations (a result of the aforementioned pa-

rameter reduction). For example, the centroid of the auroral oval is offset anti-sunward of

the Corrected GeoMagnetic (CGM) pole [Holzworth and Meng , 1975], thus requiring high

SH degrees to represent the electrojet currents contained in the oval. Furthermore, the

EIMF is spatially highly structured, such that even high-order models like CM5 cannot

adequately capture the effect of the electrojet current reversal at the poleward edge of

the auroral oval, or of the substorm electrojet, which both vary on order 100 km scale

(approximately equivalent to spherical harmonic degree 100). The second main modelling

method we consider is that based on conditional averages of the EIMF [e.g. Weimer ,

2005a, b; Weimer et al., 2010; Weimer , 2013]. This approach may offer higher resolution

but assumes the variation of the EIMF can be explained by a few independent (e.g. IMF

Bz) or dependent parameters (e.g. AE, Dst).

From ground-based magnetic data, Sun et al. [1998] and Xu and Kamide [2004] have

used EOF-related methods to analyse the natural modes of variability in the polar region,

whilst Balasis and Egbert [2006] have likewise assessed the mid-latitude variability. The

approach of Sun et al. [1998] was to fit a smooth SHA model to discrete measurements,
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then apply the EOF analysis to the data predictions, leading to a loss of some signal.

The other two studies each translated the data to the local time frame – Xu and Kamide

[2004] performed this step for a single observatory, and Balasis and Egbert [2006] ignored

gaps between stations when applying the translation. In each case, the authors applied

temporal filtering to constrain the errors introduced by their approaches. Here we develop

a different method designed to be applied to a data set of a solar cycle’s worth of magnetic

vector measurements at 1-minute resolution, at over 300 different locations around the

world. These data have recently been collected by the international project SuperMAG

[Gjerloev , 2012], spanning the years 1980 to 2015 at the time of writing. Following Beck-

ers and Rixen [2003], our method self-consistently infills missing EIMF data based on

the discovered modes. In this paper we demonstrate the method and its capabilities to

resolve and decompose the EIMF in the polar regions for a sample month of data from

the SuperMAG archive.

In section 2 we discuss the pre-processing of the SuperMAG data, and the details of the

subsequent EOF analysis method. In section 3 we present the results of the analysis and

additional calculations supporting an interpretation of the discovered modes, consistent

with existing knowledge. We discuss pros and cons of the method in section 4. We

summarise our findings in section 5.

2. Method

2.1. Pre-analysis processing

The SuperMAG data set contains 1-minute measurements from both permanent mag-

netic observatories (referenced to an absolute baseline) and magnetic variometers (vari-
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ations about an arbitrary baseline). The northern polar distribution of the 125 stations

available in February 2001 is shown in Figure 1(a). We first reference the data to a

common baseline, for which we use the existing SuperMAG re-baselining technique de-

scribed by Gjerloev [2012] aimed at separating internal and external field contributions.

We remove only the slowly-varying ‘yearly’ trend described by Gjerloev [2012], retaining

signal up to time scales of about one month, with minimal bias from the core field secular

variation.

The EOF analysis assumes that the signal of interest comprises a fixed set of spatial

patterns of time-varying amplitude, i.e. standing waves. Thus, the EIMF signal will

be represented by fewer EOF modes if we process the magnetic vector data in a coor-

dinate system in which its spatial structure is relatively constant. This is similar to the

parameter-reduction procedure used in SHA (described above), differing in that the EOF

modes have no constraints on spatial complexity (beyond the resolution implied by the

data coverage). For magnetosphere-ionosphere (MI) current systems driven by solar in-

fluence (e.g. Sq, DP1 , DP2, ring current, etc.) the optimal reference frame will be a

Sun-synchronous coordinate system of magnetic latitudes. The choice of which magnetic

latitudes to use can have a strong impact on the outcome of the analysis. Other au-

thors [Milan et al., 2015] have used coordinate systems which move with the short-period

variation of the external fields, in an attempt to account for expansion of the MI current

systems (e.g. by defining latitudes relative to the auroral oval position). We have not done

this since we seek to minimise assumptions in our discovery of the modes, and account-

ing for the external field motion incorrectly can introduce spatial errors from unfounded
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assumptions of the behaviour of the system. Thus we approach our analysis using mag-

netic latitudes defined from the internal magnetic field, and process the EIMF data in the

quasi-dipole (QD) system [Richmond , 1995], using MLT rather than QD longitude. The

use of QD coordinates (rather than say solar magnetospheric (SM)) minimises variations

due to longitudinal internal field variations in the MLT frame.

We rotate the magnetic vector measurements using the QD basis vectors, following the

approach described in Emmert et al. [2010] and Laundal and Gjerloev [2014], resulting

in the components (r, θ, φ), directed respectively upward, and southward and eastward

(approximately so, since the horizontal components are slightly non-orthogonal).

The EOF decomposition does not take the positions of the input data into account,

hence spatial clusters of stations can dominate the variance partitioning. To address such

spatial clustering in the SuperMAG coverage, we create a set of approximately equal-area

bins and equate the data value in each bin to the magnetic field value measured at the

station closest to the centroid of the bin. Thus only one station contributes to each bin

at a given time, and there is some redundancy in the station coverage. We are therefore

able to remove the contributions from stations which have (non-physical) errors, without

affecting the data coverage. We remove contributions from stations APL, ARC, CLK,

DMH, EAG, GTF, HLL, KVI, PIN, and PKR prior to binning. The bins are fixed in

the QD coordinate system, as illustrated for an example time in Figure 1(b). The typical

bin area is 110,000 km2, chosen to maximise the invariant latitudinal resolution whilst

satisfying that there is at least one station contributing to each bin (over the course of
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a given day). The details of the bin calculation procedure are described by Leopardi [2007].

To reduce processing costs, the 1-minute resolution data from each station are com-

bined (via taking their 5-minute average) in 5-minute spans prior to binning, and set to

nulls if any one of the five data points is missing in each span. The 5-minute span is

within the response time of the current systems of interest [e.g. Freeman, 2003], so the

averaging procedure has little impact on the covariances. The binned data for a single

magnetic field component comprises a data matrix of dimension n times by p spatial bins.

Prior to the EOF analysis we subtract from each component the mean of each bin’s time

series (computed over n 5-minute spans within each bin), since it is only the variance

of the EIMF data which is analysed. Rather than an EOF analysis being applied to

each component separately, we treat the three components as extra parameters in the

spatial dimension. Hence, the full mean-centred vector data matrix Xo,g is of size n by

3p, where o is invariant and indicates ‘original’, and g indicates the version of the binned

data (in section 2.2, we will iteratively alter the binned data content). At this stage, g = 1.

The removed means x are a vector of length p for each QD component. In this study

we limit our interpretation to the θ- and φ-components, since these reflect the structure

of the ionospheric equivalent currents. In Figure 2 we show the horizontal component

of the background mean, the vectors rotated 90◦ clockwise to illustrate the direction

and magnitude of the equivalent ionospheric currents that would cause them. The θ-

component of the horizontal vector is used to colour each bin – respectively, red (blue)

colours indicate southward (northward) magnetic perturbations, and westward (eastward)
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equivalent current flow. The pattern of the DP2 system dominates the background mean.

Another notable feature in Figure 2 is the area of westward equivalent current at lower

latitudes on the dayside thought to represent the northernmost edge of the Sq current

system [Chapman and Bartels , 1940]. As we shall see later, this low-variance system does

not have a significant contribution to the high-latitude modes.

The EOF decomposition requires that the input data set be complete, with no missing

values. However, at any given epoch, most of the bins are empty. Throughout the analysis

we will use a variety of values to complete the data matrix by infilling the missing data,

and so any infilled (or complete) data matrix is referred to as a variant of Xf,g,h. Here, f

is invariant and indicates that the data gaps are ‘filled’, g refers (likewise to its definition

above) to the version of the binned data to which the EOF analysis is applied (i.e. g = 1

for Xo,1), and h refers to the iteration of the infill procedure, which we describe fully in

section 2.2. As an initial infill choice we define a matrix Xf,1,1, for which the null values

of Xo,1 are replaced by zeros (a reasonable guess-value for the mean-centred data)

Xf,1,1 |Xo,g exists = Xo,1

Xf,1,1 |Xo,g null = 0
(1)

For ease of reference, we define a ‘mask’ matrix M to assign null values to a given matrix,

such that Xo,g = MXf,g,h. The processed data are now ready for EOF analysis.

2.2. Decomposition method

As described by Bjornsson and Venegas [1997, page 12], von Storch and Zwiers [2002,

pages 294-295] and Jolliffe [2002, page 5], the principle of EOF eigenanalysis is that

a mean-centred field Xf,g,h (comprising 3-component data measured at a number of p
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locations for a number of n times) can be decomposed into n spatial patterns and n

temporal oscillations. Each pair of a spatial pattern and its temporal oscillation is termed

a ‘mode’ of the analysis. The sum of the modes will reconstruct the variance of the

original data. Each spatial pattern has 3 values at each of the p locations, reflecting the

differing contribution of each component to the mode. If we define each spatial pattern v

as a column-vector of length 3p (all modes represented collectively by V = (v1,v2, ...,vn))

and each temporal oscillation t as a column-vector of length n (represented collectively

by T = (t1, t2, ..., tn)), then the decomposition of variance is given via

Xf,g,h =
n

∑

j

tjv
T

j = TVT (2)

where the T are the eigenvectors of R, the covariance matrix of Xf,g,h, formed from

R = Xf,g,hX
T

f,g,h. The V are given by a projection of the eigenvectors onto the original

data
(

V = XT

f,g,hT
)

. The eigenvectors are a temporal basis and this is referred to as a

‘T-mode’ analysis [Richman, 1986]. The proof that the basis vectors which diagonalise R

also maximise the variance of a projection onto X is discussed by Hannachi et al. [2007]

and von Storch and Navarra [1999].

The generalisation of the (ostensibly scalar) EOF method to vector data is discussed by

Jolliffe [2002], where it is termed Common (or Combined) Principal Component Analysis.

Although the EOF analysis takes no account of relationships between spatial parameters,

our treatment of the QD components as additional parameters in the spatial dimension

means that the three components of a given spatial pattern are each subject to the same

temporal oscillation. For a set of amplitudes ti, the spatial amplitude for a given QD

component is then controlled by the differing weights of the relevant third of the asso-
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ciated vi. Our approach greatly simplifies the physical interpretation of the modes, and

prevents the loss of information which can arise when the reconstruction (equation (2))

is truncated to the highest ranked modes by variance and when weaker components (e.g.

φ) have a substantially lower ranking to the other components.

Our initial choice of zeros as infill values for missing data reduces the variance of the

dataset, and with it, the amplitude of the leading modes. Several different approaches

to obtaining a complete dataset from spatially and temporally irregular measurements

are possible. Since we have access to a good coverage of data, we are able to adopt an

approach similar to that of Beckers and Rixen [2003] and iteratively use the output of the

EOF analysis as a method for infilling empty bins, until convergence of the amplitudes of

the modes and the data. We can use Equation (2) to reconstruct the (infilled) data matrix

for any combination of individual modes. We term the reconstruction of the first EOF

mode Xe
f,1,1 = t1v

T

1 . The values of Xe
f,1,1 are used to re-infill the data matrix (afterwards

termed Xf,1,2) via

Xf,1,2 |Xo,g exists = Xo,1

Xf,1,2 |Xo,g null = Xe
f,1,1

(3)

The process of infilling Xf,1,2 as per Equation (3) and performing the EOF decomposition

of Equation (2) proceeds iteratively until the amplitude of Xe
f,1,h converges with that of

Xo,1, where both exist. We find that convergence occurs well within h = 35 for modes

which contribute significantly to the total variance (discussed further in section 3.1), with

diminishing returns for greater h. After convergence, the information represented by the

leading mode is complete across all bins. We do not want this information to control the

infill for subsequent modes, so we remove the iterated EOF solution from the original data
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via

Xo,2 = Xo,1 −
(

MXe
f,1,35

)

(4)

where Xo,2 represents the original data minus the information contained in the first iter-

ated mode. We then repeat the iterative infill process, beginning with zeros as before

Xf,2,1 |Xo,g exists = Xo,2

Xf,2,1 |Xo,g null = 0
(5)

and upon solving Xf,2,1 with the EOF analysis, use the reconstruction based on its leading

mode to refresh the infill, repeating until h = 35. We have described a nested double

iteration over g and h: we iteratively infill the empty bins using the amplitudes of the

leading mode, then we correct the original data for this mode and repeat the process.

The results discussed in this manuscript are the leading modes from each stage of the

correction process, once convergence has been attained. Although all are technically

‘mode 1’ of a given corrective stage, we refer to them as modes 1, 2 etc., according to the

stage (i.e. value of g) they originated from. Although our EOF infill approach is based

on that described by Beckers and Rixen [2003], the approaches differ slightly. Whilst we

iterate each mode to convergence and then subtract it from the original data, Beckers and

Rixen [2003] infill gaps in the data using each mode in succession, without altering the

original data. Our approach therefore slightly reduces the orthogonality of the leading

modes we present since each originates from a different EOF analysis. This works to our

benefit – since the current systems of interest are not mutually orthogonal, they are better

separated when using our approach.

3. Results

3.1. Variance explained

D R A F T January 13, 2017, 12:30pm D R A F T



SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS X - 15

It is common to use the eigenvalues of the EOF decomposition as a direct measure

of the amount of variance of the original undecomposed data ‘explained’ by each mode.

However, since our data includes both measured and infilled values, the eigenvalues no

longer have a direct relationship to the variance of the original data. The variance ex-

plained by a certain mode is calculated from the variance ofMXe
f,g,35 with g indicating the

appropriate mode number. The variance of the original data is given from the variance of

Xo,1 = MXf,1,1. That is, the variances are calculated only at the measurement locations.

In Figure 3 we show a number of different representations of how each EIMF mode

accounts for the variance of the measured data. The proportion of the variance of the

measured data which is explained by each of the first 10 modes is shown in Figure 3(a).

This decreases rapidly from 42% for mode 1, 9% for mode 2, to less than 2% for modes

7 and higher. Modes 1 to 6 collectively account for over 65% of the variance of the mea-

sured data. Whilst modes 7+ collectively define a not-insignificant contribution to the

variance, it is not clear that these modes are individually dominated by a single physical

process, and thus we cannot meaningfully interpret the patterns they represent. These

modes are also less likely to converge during the infill process within a reasonable number

of iterations. For these reasons we consider modes 1–6 to provide a reasonably complete

and physically understandable description of the EIMF data, and these modes are the

focus of our results below.

Figure 3(b) shows the horizontal vector norm of the RMS value of Xo,1 inside each bin,

exhibiting highest variability of the measured data in the post-midnight auroral region.
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In Figures 3(c) and 3(d) we show the horizontal vector norm of the RMS values of Xo,1

once the reconstruction for modes 1 to 6 has been subtracted. We use the same colour

values in Figures 3(b) and 3(c), but in Figure 3(d) we use a colour scale which is saturated

to the true range of the plotted data. Comparing Figures 3(b) and 3(c) we see that the

residuals have been reduced everywhere (as expected), and comparing Figures 3(b) and

3(d) we demonstrate that the residual is roughly proportional to the original variance (i.e.

the figures appear broadly similar). From this, we can deduce that the leading EOFs are

adept at capturing the large-scale structures of variance in the data. The exception to

this is in the pre-midnight MLT sector at auroral latitudes, where the leading EOF modes

capture proportionately less of the EIMF variance than elsewhere, possibly due to the

varying location of substorm onset [Frey et al., 2004].

3.2. Decomposed modes

The EOF decomposition returns EIMF modes which are not necessarily physically

meaningful. However, in this analysis we are able to ascribe physical meaning to each of

the EIMF modes 1–6, which we describe as follows.

3.2.1. EIMF mode 1 – the static DP2 current system

In Figure 4(a) we show, for the month of February 2001, the equivalent currents of the

horizontal components of EIMF mode 1. The spatial pattern has been normalised such

that multiplication of the pattern with its associated temporal oscillation (the middle

panel in Figure 4(a)) will produce the appropriate perturbation for that epoch. Similarly

to Figure 2, the θ-component of the EIMF mode (azimuthal equivalent current) is indi-

cated by the colour map – we adopt this presentation for each mode shown. The key

feature of mode 1 is the two-cell spatial pattern of equivalent current flow, very similar
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to that of the mean field shown in Figure 2, which we interpreted as that of the DP2

current system (integrated over the analysis span of one month). To substantiate this,

the lowermost panel in Figure 4(a) shows the epsilon index, an independent measure of

the solar wind-magnetosphere coupling strength [Perreault and Akasofu, 1978; Akasofu,

1981; Koskinen and Tanskanen, 2002], that has been shown to correlate well with the

polar electric field [Reiff et al., 1981] associated with DP2 [Dungey , 1961]. The index is

lagged by 30 minutes from the estimated time of first solar wind contact with the bow

shock, to optimise comparison with our ground-based measurements. The lag of 30 min-

utes is in agreement with the range of lags shown by Sun et al. [1998] to best reflect the

IMF impact at ground level. The time series of EIMF mode 1 and epsilon are similar, and

indeed mode 1 is found to have a temporal correlation (Pearson’s r value of 0.61) with the

lagged epsilon index. Although the variability of mode 1 is not strongly determined from

the variability of epsilon (since the r2 value is 0.37), the correlation is highly statistically

significant (p ≪ 0.01). Thus, based on the spatial and temporal patterns of mode 1, we

consider it to represent the static part of the DP2 current system.

3.2.2. EIMF mode 3 – expansion and contraction of DP2

Any given mode of an EIMF decomposition is a standing mode (see equation (2)) – it

has a fixed spatial pattern such that the mode’s perturbation varies proportionately every-

where with time. Thus, any spatial motions of the DP2 equivalent current system through

the course of a month cannot be represented by a single mode, i.e. mode 1. Specifically,

we know that spatial changes in DP2 result from expansions and contractions of the polar

cap, dependent on the relative dominance of the dayside (magnetopause) and nightside

D R A F T January 13, 2017, 12:30pm D R A F T



X - 18 SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS

(magnetotail) magnetic reconnection rates [e.g. Lockwood et al., 1990].

We find that mode 3 describes the expansion and contraction of the DP2 pattern. The

spatial pattern of mode 3, the equivalent currents of which are shown in Figure 4(b),

resembles the north-south spatial derivative of mode 1 (not shown) and is dominant in

the same LT sectors. Its full time series is shown in the lowermost panel in Figure 4(b).

Addition of mode 1 and mode 3 with varying weightings is found to cause mode 1 to

expand or contract by varying amounts (not shown). This makes sense because the time

rate of change of a field in a moving frame (e.g. DP2 expanding with the polar cap) is

the addition of the time rate of change of the field at a fixed position (i.e. mode 1) and

the spatial derivative of this field multiplied by the frame’s velocity.

To describe the effect of an imbalance in dayside and nightside reconnection rates on

DP2, we examine the behaviour of modes 1 and 3 during substorms. As an indepen-

dent indicator of substorm onset times, we use the epochs derived from IMAGE satellite

data by Frey et al. [2004]. We have superimposed (separately and without duplication of

data) the temporal variations of modes 1 and 3 with respect to each of the 87 substorm

onsets in February 2001. In Figure 5(a) we show the mean of these superimposed time

series, to highlight the change in strength of DP2 (from mode 1) and its motion (expan-

sion/contraction from mode 3) throughout the typical substorm evolution. With respect

to the monthly mean amplitude of DP2 of +60 nT (see Figure 2), mode 1 is weaker prior

to onset and then rapidly stronger, and then more gradually weaker, after onset. We in-

terpret this sequence to be the intensification in DP2 due to enhanced conductivity caused
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by particle precipitation from the magnetotail dipolarisation at onset [Baumjohann and

Treumann, 1997]. The variation in mode 3 over the same timespan is consistent with a

relative expansion (negative amplitude) within 30 minutes prior to onset followed by a

contraction in the following 2 hours, consistent with the expanding-contracting model of

polar cap evolution during the substorm [Lockwood et al., 1990]. To demonstrate this, in

Figure 5(b), we have summed the θ-component spatial pattern of modes 1 and 3 (recon-

structed for the superimposed substorm) in addition to the background mean (shown in

Figure 2) and used this to calculate a time series of the latitude of the polar cap boundary

during the substorm. (To calculate this time series we have linearly interpolated the spa-

tial pattern of the summed modes to a meridian line at 02:10 MLT with a latitude spacing

of 0.001◦, and from this we compute the latitude at which the θ-component crosses a value

of zero.) The expansion and contraction of the polar cap shown in Figure 5(b) follows

the trend of mode 3 in Figure 5(a) almost exactly. This is a strong verification of our

interpretation of mode 3 as a mathematical description of the expansion and contraction

of the DP2 pattern according to the polar cap size. Note that the latitudinal displacement

is smaller than that expected for individual substorms because this is the average over

many substorms, and indeed larger displacements of the mode 1 and 3 pattern are seen

for individual substorms (not shown).

Figures 5(c)–(f) illustrate the meridional profiles of modes 1 and 3, the background

mean and the sum of these three, for successive epochs throughout the superimposed

substorm corresponding to the lines labelled (1)–(4) in Figure 5(a). From these, the

relative contributions of modes 1 and 3 to the θ-component zero-crossing can be seen. In
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panel 5(c) 40 minutes prior to the substorm growth phase, a weakened DP2 convection

system is apparent with little expansion or contraction. Just (5 minutes) before substorm

onset in panel 5(d), we see that mode 3 is negative, shifting the weak convection pattern

equatorwards. Almost immediately (5 minutes) after substorm onset in panel 5(e), mode

3 has changed sign and mode 1 has strengthened, increasing the magnitude of the DP2

pattern and moving it polewards. Finally in panel 5(f) 50 minutes after onset, we show

the maximum amplitudes of modes 1 and 3, corresponding to the strongest perturbation

of the DP2 equivalent current system and its most contracted (poleward) extent, prior to

recovery (not illustrated). In this way, the sum of modes 1 and 3 is capable of describing

much of the morphology of the DP2 system.

3.2.3. EIMF mode 2 – the static DP1 current system

The normalised spatial pattern of the mode 2 equivalent currents is shown in Figure 6,

along with its amplitude time series. In the nightside, the spatial pattern exhibits a

westward equivalent current which peaks in the pre-midnight LT sector and at auroral

latitudes. We interpret this as the static part of the Disturbance Polar 1 (DP1) system of

the substorm current wedge. This is substantiated in Figure 8(a) which shows the mean

temporal evolution of the mode 2 amplitude with respect to substorm onset in the same

way as in Figure 5(a). The solid black curve in Figure 8(a) is given by

f(t) = ctept + b |t>0 (6)

where t indicates time since onset, and the constants c, p and b are calculated using a

least-squares procedure which best fits the mean mode 2 series (green line in Figure 8(a)).

We obtain c = 251.13 nT and p = 2.78 hours−1. The functional form in equation (6) was

shown by Weimer [1994] to fit a superposition of the (negative) AL index with respect to

D R A F T January 13, 2017, 12:30pm D R A F T



SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS X - 21

substorm onset and argued to be a solution of the current flowing in a resistive electrical

circuit appropriate to the substorm current wedge. Weimer [1994] divided the AL index

into three groups of increasing amplitude and obtained values for c from 794 to 3232 nT

and p (after correction for sign) ranging from 1.78 to 2.42 hours−1. The good agreement

between the black and green curves in Figure 8(a), and the relatively similar values of the

time constant (1/p) indicates that mode 2 describes the general form of the substorm.

The lower amplitude of c in our case may be due to the removal of the DP2 and other

modes from the EIMF signal.

In Figure 6, the mode 2 pattern exhibits an eastward equivalent current, which peaks

at auroral latitudes between 05:00 and 11:00 MLT. This eastward current is part of a

more general trend seen between 03:00 and 20:00 MLT, in which the mode 2 pattern

is approximately opposite to the mode 1 DP2 pattern (shown in Figure 4(a)) in the

same sector. Since both modes 1 and 2 are increasingly positive after substorm onset (see

Figures 5(a) and 8(a)), this indicates that substorm onset causes a localised increase in the

amplitude of the DP2 equivalent current in the nightside 20:00 to 03:00 MLT sector with

respect to the dayside 03:00 to 20:00 MLT sector. This is likely due to the enhancement

of ionospheric conductivity in the 20:00 to 03:00 MLT sector by precipitating particles

in the substorm current wedge causing an associated increase of DP2 in this nightside

sector. Comparing the amplitudes of the mean (Figure 2), mode 1 (Figure 4(a)) and

mode 2 (Figure 6) patterns at the end of the expansion phase (at approximately onset

+ 20 minutes), we estimate that the nightside DP2 is enhanced by up to about 50%

with respect to the dayside. Thus whilst the DP1 system is distinct from DP2, they are
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not entirely independent in the EOF decomposition and the dayside structure of mode

2 (including the eastwards equivalent current) is a measure of the connection of these

otherwise independent patterns.

3.2.4. EIMF modes 4–6 – spatial changes of DP1

Whilst mode 2 describes the majority of the EIMF variance associated with a substorm,

to capture the full effect of the substorm on DP1 requires a number of additional spatial

patterns. We find that when combined with mode 2, modes 4–6 each describe some

aspect of the change of the DP1 equivalent current system during a substorm. The

equivalent currents of modes 4–6 are shown in normalised form in Figure 7. Mode 4

(shown in Figure 7(a)) describes an east-west motion of the peak of the nightside mode

2 equivalent current. Analogous to mode 3 and mode 1, we see that mode 5 (shown in

Figure 7(b)) resembles the latitudinal derivative of mode 2 in the evening sector. Thus

mode 5 describes the polewards contraction of the mode 2 equivalent current in this sector.

Similarly, mode 6 (shown in Figure 7(c)) describes the poleward motion of the poleward

boundary of the DP1 equivalent current in the pre-midnight sector. Although modes

5 and 6 have somewhat similar physical effects on mode 2, it is mode 6 which is more

spatially localised (near the mode 2 peak amplitude) and is of stronger amplitude than

mode 5. Hence, mode 6 is more important than mode 5 to the expansion and contraction

of the DP1 poleward boundary and associated polar cap boundary experienced during

the substorm, as we show in the following analysis.

Figure 8(b) illustrates the latitude of the polar cap boundary during the superimposed

substorm, along a meridian line at 23:20 MLT. The calculation process is similar to that
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described earlier for Figure 5(b) – we sum the θ-components of modes 2, 4–6 and the

background mean, then compute the zero crossing latitude between the mode 2 peak am-

plitude and the pole. The time series of this latitude is similar to the temporal series

of mode 6 during the superimposed substorm (the dark blue curve in Figure 8(a)), con-

firming our interpretation of this mode as the dominant descriptor of the expansion and

contraction of the poleward edge of the westward equivalent current in this MLT sector.

The rapid poleward motion of the zero-crossing latitude at substorm onset is consistent

with the poleward expansion of the nightside aurora – a defining feature of the substorm

expansion phase – and the contraction of the polar cap.

For the same sum of modes 2, 4–6 and the background mean, Figure 8(c) shows a

time series of the longitude (computed from QD MLT ∗ 15) of the zero-crossing of the

θ-component at a latitude of 69◦, between 18:00 and 24:00 MLT. This illustrates the ten-

dency of the substorm equivalent current wedge to travel westwards upon substorm onset.

This is likely due to a combination of the background mean with modes 2 and 4, because

(as described above) modes 5 and 6 are more associated with latitudinal motion.

The substorm evolution can be summarised as an intensification and westward surge

of the pre-midnight sector westward equivalent current in the auroral oval, accompanied

by a pronounced contraction of the polar cap. These aspects are described by the modes

2 and 4–6, collectively the descriptors of the DP1 current system. On the dayside, the

tendency of DP2 to respond to the substorm creates spatial patterns in modes 2 and 4–6

which are not directly related to the substorm equivalent current wedge. Hence, we have
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based our interpretation of the physical meaning of the ‘DP1 modes’ on their responses

in the nightside MLT sector. The sum of modes 1–6 provides a complete description of

the winter polar cap dynamics.

4. Discussion

The EOF method has the following three main benefits. First and foremost is the

self-consistency of the approach; since the EOF method is empirical, its solutions are de-

termined by the data without requiring their morphology to be specified prior to analysis.

This is of greatest practical use when using the modes themselves to infill missing values,

as the process can only converge for infill solutions which reinforce the patterns in the

data. Secondly, the discovered modes provide valuable insight into the major electrical

currents affecting the EIMF system, and the accompanying underlying physical processes.

Thirdly, the decomposition of a dataset into independent modes allows for a substantially

more compact description of its key attributes. A comparison of the amplitudes of the

removed means (Figure 2) to the much higher amplitudes of mode 1 (middle panel in

Figure 4(a)) shows that the EIMF is a system dominated by its variance, which lends it

naturally to decomposition by EOFs.

These types of benefits have led to EOFs being used recently in studies of other aspects

of ionospheric electrodynamics, for instance the electric field and plasma motion [Matsuo

et al., 2002; Kim et al., 2012; Cousins et al., 2013a, b], field-aligned current [Cousins

et al., 2015; Milan et al., 2015], and particle precipitation and associated conductivity

[Stoneback et al., 2013; McGranaghan et al., 2015, 2016]. EOFs have also been applied to

the geomagnetic field, as here, by Golovkov et al. [2007], Shore et al. [2016], and the studies
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examined above [Sun et al., 1998; Xu and Kamide, 2004; Balasis and Egbert , 2006]. The

closest study to ours is that of Sun et al. [1998], which used 70 ground-based magnetic

stations, successfully resolved DP2 and DP1 over the whole polar cap, and demonstrated

a correlation of the DP2 system with epsilon. Our study improves upon this work in that

Sun et al. [1998] used the method [described in the study of Kamide et al., 1982] of SHA

to create a continuous coverage of data prior to analysis by the method of EOFs. Our

chosen infill approach relies only on the EOF method itself, thus is more self-consistent,

and free from the spatial smoothing and geometric assumptions inherent in SHA. Our

resolution of 6 distinct, physically-meaningful modes to the two modes resolved by Sun

et al. [1998] demonstrates the stability and accuracy of the iterative-infill approach de-

scribed by Beckers and Rixen [2003] when applied to the SuperMAG dataset.

We also highlight the recent study of Milan et al. [2015], which applied an eigen-

decomposition to the AMPERE data set of field-aligned currents, in an analysis spanning

2010–2012. The method is applied to different data (and a different electromagnetic com-

ponent) to our study, but aims to resolve essentially similar physical processes, and thus

provides a useful complement to our results. Perhaps the primary difference to our study

is that Milan et al. [2015] have transformed their data into a coordinate system which

expands and contracts according to the latitude of a circle fitted to the auroral oval. This

is intended to simplify the data, and enable more of it to be represented as standing

waves. The step will reduce the absolute variance of the data set, and should ‘steepen’

the eigenspectrum, i.e. allow proportionally more of the variance to be accounted for

by the leading modes. However, a comparison of our eigenspectrum (Figure 3(a)) with
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those presented by Milan et al. [2015] shows that a substantially greater proportion of

the variance is accounted for by the first mode in our study (41% to approximately 25%).

The correction applied by Milan et al. [2015] has apparently added to the complexity of

the data rather than reducing it. This may also be the reason that the authors find no

coherent substorm response, since the substorm will represent one of the larger deviations

from a circular geometry for the auroral oval. The resolution by Milan et al. [2015] of a

mode describing the dayside cusp currents is not seen in our analysis since for the winter

month we present here, this system is very weak. This will be shown in a subsequent

study, in preparation.

Despite the increasing popularity of the EOF method, it does have some downsides. The

pre-EOF removal of the mean is a constraint in that it requires filtering of the data via the

baseline approach. Yet the baseline has minimal variance over the course of a month, and

is added back on to any station-specific prediction for a given EOF mode. The primary

constraint of EOFs in this case is their orthogonality, requiring that the decomposed pat-

terns be uncorrelated. Whilst this precludes the unique separation of correlated systems,

it also exposes novel, unexpected information about the physical connections in the EIMF

system. The connection between the DP1 mode and the DP2 mode on dayside was not

expected, but provides valuable insight into attempts to model the whole polar cap system.

The good similarity between the relationship in Equation (6) and the mean of the

superposed mode 2 time series corroborates our interpretation of mode 2 as the substorm

component of the EIMF. We have utilised correlations with independent parameters of

D R A F T January 13, 2017, 12:30pm D R A F T



SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS X - 27

solar-terrestrial coupling to assist in our interpretations of the modes. As part of a wider

investigation into the significance of each of the first 6 modes, we performed Pearson

correlations (not shown) between the mode amplitude series and IMF Bx, IMF By and the

solar wind dynamic pressure (each lagged by 30 minutes). These exhibited no substantial

correlation. IMF Bz (lagged by 30 minutes) showed a correlation of −0.58 with mode 1 (p

≪ 0.01), but this is expected given the input of IMF Bz to the epsilon index. Whilst mode

1 is certainly dominated by the DP2 system, identification of the precise relationship of

DP2 to epsilon, and of the physical links between modes 1 and 2, requires the incorporation

of further independent solar-terrestrial interaction parameters to data spanning a greater

amount of time, and is left as a future study.

5. Conclusions

We have demonstrated that the method of EOFs is capable of describing the polar

external and induced magnetic field from ground-based data, providing novel information

on the spatiotemporal evolution of the key polar equivalent current systems. With the

EOF method, the DP2 and DP1 systems, and modes describing their spatial fluctuations,

are resolvable in all LT sectors and at all times. They describe over 65% of the total

variance of the northern polar EIMF during the sample month studied (February 2001).

We use this information to derive time series of the polar cap radius in two LT sectors as

an example of the utility of the modes. Our results represent a substantial improvement

on existing work, and indicate that the method is highly suitable for a solar-cycle length

analysis of the EIMF, which is under way.

D R A F T January 13, 2017, 12:30pm D R A F T



X - 28 SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS

Acknowledgments. Funding for this project was provided by NERC grant

NE/J020796/1. The work was performed using hardware and support at the British

Antarctic Survey (BAS). Thanks go to Gareth Dorrian for discussions on the results

which improved the project. MATLAB code for the rotation to QD coordinates was

provided by Nils Olsen. MATLAB code used to compute the equal-area bin lay-

out was written by Paul Leopardi. The epsilon, IMF and solar wind dynamic pres-

sure measures used in this study were calculated from OMNI data downloaded from

ftp://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/monthly_1min/ on 2014-

02-28. The version used has been resampled to simulate measurements taken at the mag-

netopause. The results presented in this paper rely on ground magnetometer data supplied

by the SuperMAG archive, for which we gratefully acknowledge: INTERMAGNET (we

thank the the national institutes that support its contributing magnetic observatories,

and INTERMAGNET for promoting high standards of magnetic observatory practice

(www.intermagnet.org)); USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; CANMOS;

The S-RAMP Database, PI K. Yumoto and Dr. K. Shiokawa; The SPIDR database;

AARI, PI Oleg Troshichev; The MACCS program, PI M. Engebretson, Geomagnetism

Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida

Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; SAM-

NET, PI Farideh Honary; The institutes who maintain the IMAGE magnetometer array,

PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Connors; DTU Space, PI Dr. Juer-

gen Matzka; South Pole and McMurdo Magnetometer, PI’s Louis J. Lanzarotti and Alan

T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Artarctic Survey; McMac,

PI Dr. Peter Chi; BGS, PI Dr. Susan Macmillan; Pushkov Institute of Terrestrial Mag-

D R A F T January 13, 2017, 12:30pm D R A F T



SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS X - 29

netism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Dr. Juergen

Matzka; MFGI, PI B. Heilig; IGFPAS, PI J. Reda; University of LAquila, PI M. Vellante;

SuperMAG, PI Jesper W. Gjerloev.

References

Akasofu, S. I. (1981), Energy coupling between the solar wind and the magnetosphere,

Space Science Reviews, 28 (2), 121–190, doi:10.1007/BF00218810.

Balasis, G., and G. D. Egbert (2006), Empirical orthogonal function analysis of magnetic

observatory data: Further evidence for non-axisymmetric magnetospheric sources for

satellite induction studies, Geophysical Research Letters, 33 (11), 4.

Baumjohann, W., and R. Treumann (1997), Basic Space Plasma Physics, Imperial College

Press.

Beckers, J. M., and M. Rixen (2003), EOF Calculations and Data Filling from Incom-

plete Oceanographic Datasets, Journal of Atmospheric and Oceanic Technology, 20 (12),

1839–1856.

Bjornsson, H., and S. Venegas (1997), A manual for EOF and SVD analyses of climatic

data, CCGCR (Centre for Climate and Global Change Research) Report, 97 (1).

Chapman, S., and J. Bartels (1940), Geomagnetism, vol. 1, Clarendon Press Oxford.

Cousins, E. D. P., T. Matsuo, and A. D. Richmond (2013a), Mesoscale and large-scale vari-

ability in high-latitude ionospheric convection: Dominant modes and spatial/temporal

coherence, Journal of Geophysical Research: Space Physics, 118 (12), 7895–7904, doi:

10.1002/2013JA019319.

D R A F T January 13, 2017, 12:30pm D R A F T



X - 30 SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS

Cousins, E. D. P., T. Matsuo, and A. D. Richmond (2013b), Superdarn assimilative

mapping, Journal of Geophysical Research: Space Physics, 118 (12), 7954–7962, doi:

10.1002/2013JA019321.

Cousins, E. D. P., T. Matsuo, A. D. Richmond, and B. J. Anderson (2015), Dominant

modes of variability in large-scale Birkeland currents, Journal of Geophysical Research:

Space Physics, 120 (8), 6722–6735, doi:10.1002/2014JA020462, 2014JA020462.

Dungey, J. W. (1961), Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev.

Lett., 6, 47–48.

Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), A computationally compact rep-

resentation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors,

Journal of Geophysical Research: Space Physics, 115 (A8), doi:10.1029/2010JA015326.

Freeman, M. (2003), A unified model of the response of ionospheric convection to changes

in the interplanetary magnetic field, Journal of Geophysical Research: Space Physics

(1978–2012), 108 (A1), SMP–14.

Freeman, M. P., and S. K. Morley (2004), A minimal substorm model that explains

the observed statistical distribution of times between substorms, Geophysical Research

Letters, 31 (12), doi:10.1029/2004GL019989, l12807.

Frey, H. U., S. B. Mende, V. Angelopoulos, and E. F. Donovan (2004), Substorm onset

observations by image-fuv, Journal of Geophysical Research: Space Physics, 109 (A10),

doi:10.1029/2004JA010607.

Friis-Christensen, E., and J. Wilhjelm (1975), Polar cap currents for different directions

of the interplanetary magnetic field in the Y-Z plane, Journal of Geophysical Research,

80 (10), 1248–1260, doi:10.1029/JA080i010p01248.

D R A F T January 13, 2017, 12:30pm D R A F T



SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS X - 31

Friis-Christensen, E., Y. Kamide, A. D. Richmond, and S. Matsushita (1985), Interplane-

tary magnetic field control of high-latitude electric fields and currents determined from

greenland magnetometer data, Journal of Geophysical Research: Space Physics, 90 (A2),

1325–1338, doi:10.1029/JA090iA02p01325.

Fukushima, N. (1969), Equivalence in ground geomagnetic effect of Chapman–Vestine’s

and Birkeland–Alfven’s electric current-systems for polar magnetic storms, Tech. rep.,

Tokyo Univ.

Gjerloev, J. (2012), The SuperMAG data processing technique, Journal of Geophysical

Research: Space Physics (1978–2012), 117 (A9).

Golovkov, V., T. Zvereva, and T. Chernova (2007), Space-time modeling of the main mag-

netic field by combined methods of spherical harmonic analysis and natural orthogonal

components, Geomagnetism and Aeronomy, 47, 256–262.

Hannachi, A., I. T. Jolliffe, and D. B. Stephenson (2007), Empirical orthogonal func-

tions and related techniques in atmospheric science: a review, International Journal of

Climatology, 27 (9), 1119–1152, doi:10.1002/joc.1499.

Holzworth, R. H., and C.-I. Meng (1975), Mathematical representation of the auroral oval,

Geophysical Research Letters, 2 (9), 377–380, doi:10.1029/GL002i009p00377.

Iijima, T., T. A. Potemra, L. J. Zanetti, and P. F. Bythrow (1984), Large-scale Birkeland

currents in the dayside polar region during strongly northward IMF: A new Birkeland

current system, Journal of Geophysical Research: Space Physics, 89 (A9), 7441–7452,

doi:10.1029/JA089iA09p07441.

Jolliffe, I. T. (2002), Principal Component Analysis, second ed., Springer, Berlin.

D R A F T January 13, 2017, 12:30pm D R A F T



X - 32 SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS

Kamide, Y., B.-H. Ahn, S. I. Akasofu, W. Baumjohann, E. Friis-Christensen, H. W.

Kroehl, H. Maurer, A. D. Richmond, G. Rostoker, R. W. Spiro, J. K. Walker, and

A. N. Zaitzev (1982), Global distribution of ionospheric and field-aligned currents dur-

ing substorms as determined from six IMS meridian chains of magnetometers: Ini-

tial results, Journal of Geophysical Research: Space Physics, 87 (A10), 8228–8240, doi:

10.1029/JA087iA10p08228.

Kim, H.-J., L. R. Lyons, J. M. Ruohoniemi, N. A. Frissell, and J. B. Baker (2012),

Principal component analysis of polar cap convection, Geophysical Research Letters,

39 (11), doi:10.1029/2012GL052083, l11105.

Koskinen, H. E. J., and E. I. Tanskanen (2002), Magnetospheric energy budget and the

epsilon parameter, Journal of Geophysical Research: Space Physics, 107 (A11), SMP

42–1–SMP 42–10, doi:10.1029/2002JA009283.

Laundal, K. M., and J. W. Gjerloev (2014), What is the appropriate coordinate system

for magnetometer data when analyzing ionospheric currents?, Journal of Geophysical

Research: Space Physics, 119 (10), 8637–8647, doi:10.1002/2014JA020484.

Laundal, K. M., S. E. Haaland, N. Lehtinen, J. W. Gjerloev, N. Ostgaard, P. Tenfjord,

J. P. Reistad, K. Snekvik, S. E. Milan, S. Ohtani, and B. J. Anderson (2015), Birke-

land current effects on high-latitude ground magnetic field perturbations, Geophysical

Research Letters, 42 (18), 7248–7254, doi:10.1002/2015GL065776.

Laundal, K. M., J. W. Gjerloev, N. Ø stgaard, J. P. Reistad, S. Haaland, K. Snekvik,

P. Tenfjord, S. Ohtani, and S. E. Milan (2016), The impact of sunlight on high-latitude

equivalent currents, Journal of Geophysical Research: Space Physics, 121 (3), 2715–

2726, doi:10.1002/2015JA022236, 2015JA022236.

D R A F T January 13, 2017, 12:30pm D R A F T



SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS X - 33

Leopardi, P. (2007), Distributing points on the sphere: partitions, separation, quadrature

and energy, Ph.D. thesis, University of New South Wales.

Lockwood, M., S. W. H. Cowley, and M. P. Freeman (1990), The excitation of plasma

convection in the high-latitude ionosphere, Journal of Geophysical Research: Space

Physics, 95 (A6), 7961–7972, doi:10.1029/JA095iA06p07961.

Macmillan, S., and N. Olsen (2013), Observatory data and the Swarm mission, Earth,

Planets and Space, 65 (11), 1355–1362, doi:10.5047/eps.2013.07.011.

Maezawa, K. (1976), Magnetospheric convection induced by the positive and negative z

components of the interplanetary magnetic field: Quantitative analysis using polar cap

magnetic records, Journal of Geophysical Research, 81 (13), 2289–2303, doi:10.1029/

JA081i013p02289.

Matsuo, T., A. Richmond, and D. Nychka (2002), Modes of high-latitude electric field

variability derived from DE-2 measurements: Empirical Orthogonal Function (EOF)

analysis, Geophysical Research Letters, 29 (7), doi:{10.1029/2001GL014077}.

Matsushita, S., J. D. Tarpley, and W. H. Campbell (1973), IMF sector structure ef-

fects on the quiet geomagnetic field, Radio Science, 8 (11), 963–972, doi:10.1029/

RS008i011p00963.

McGranaghan, R., D. J. Knipp, T. Matsuo, H. Godinez, R. J. Redmon, S. C. Solomon,

and S. K. Morley (2015), Modes of high-latitude auroral conductance variability derived

from DMSP energetic electron precipitation observations: Empirical orthogonal func-

tion analysis, Journal of Geophysical Research: Space Physics, 120 (12), 11,013–11,031,

doi:10.1002/2015JA021828, 2015JA021828.

D R A F T January 13, 2017, 12:30pm D R A F T



X - 34 SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS

McGranaghan, R., D. J. Knipp, and T. Matsuo (2016), High-latitude ionospheric conduc-

tivity variability in three dimensions, Geophysical Research Letters, 43 (15), 7867–7877,

doi:10.1002/2016GL070253, 2016GL070253.

McPherron, R. L., C. T. Russell, and M. P. Aubry (1973), Satellite studies of magne-

tospheric substorms on August 15, 1968: 9. Phenomenological model for substorms,

Journal of Geophysical Research, 78 (16), 3131–3149, doi:10.1029/JA078i016p03131.

Milan, S. E., J. A. Carter, H. Korth, and B. J. Anderson (2015), Principal Component

Analysis of Birkeland currents determined by the Active Magnetosphere and Plane-

tary Electrodynamics Response Experiment, Journal of Geophysical Research: Space

Physics, doi:10.1002/2015JA021680.

Nishida, A. (1968a), Geomagnetic Dp 2 fluctuations and associated magneto-

spheric phenomena, Journal of Geophysical Research, 73 (5), 1795–1803, doi:10.1029/

JA073i005p01795.

Nishida, A. (1968b), Coherence of geomagnetic DP 2 fluctuations with interplanetary

magnetic variations, Journal of Geophysical Research, 73 (17), 5549–5559, doi:10.1029/

JA073i017p05549.

Perreault, P., and S. I. Akasofu (1978), A study of geomagnetic storms, Geophysical

Journal International, 54 (3), 547–573, doi:10.1111/j.1365-246X.1978.tb05494.x.

Reiff, P. H., R. W. Spiro, and T. W. Hill (1981), Dependence of polar cap potential drop

on interplanetary parameters, Journal of Geophysical Research: Space Physics, 86 (A9),

7639–7648, doi:10.1029/JA086iA09p07639.

Richman, M. B. (1986), Rotation of principal components, Journal of Climatology, 6 (3),

293–335, doi:10.1002/joc.3370060305.

D R A F T January 13, 2017, 12:30pm D R A F T



SHORE ET AL.: EIGENANALYSIS OF EXTERNAL FIELDS X - 35

Richmond, A. D. (1995), Ionospheric electrodynamics using magnetic apex coordinates,

Journal of Geomagnetism and Geoelectricity, 47 (2), 191–212.

Sabaka, T. J., N. Olsen, R. H. Tyler, and A. Kuvshinov (2015), CM5, a pre-Swarm

comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted,

SAC-C and observatory data, Geophysical Journal International, 200 (3), 1596–1626,

doi:10.1093/gji/ggu493.

Schunk, R. W., and A. Nagy (2009), Ionospheres : physics, plasma physics, and chemistry,

Cambridge University Press, Cambridge.

Shore, R. M., K. A. Whaler, S. Macmillan, C. Beggan, J. Velmsk, and N. Olsen (2016),

Decadal period external magnetic field variations determined via eigenanalysis, Journal

of Geophysical Research: Space Physics, 121 (6), 5172–5184, doi:10.1002/2015JA022066,

2015JA022066.

Stoneback, R. A., N. K. Malakar, D. J. Lary, and R. A. Heelis (2013), Specifying the

equatorial ionosphere using CINDI on C/NOFS, COSMIC, and data interpolating em-

pirical orthogonal functions, Journal of Geophysical Research-Space Physics, 118 (10),

6706–6722, doi:{10.1002/jgra.50596}.

Sun, W., W.-Y. Xu, and S.-I. Akasofu (1998), Mathematical separation of directly driven

and unloading components in the ionospheric equivalent currents during substorms,

Journal of Geophysical Research: Space Physics, 103 (A6), 11,695–11,700, doi:10.1029/

97JA03458.
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Figure 1. (a) Layout of the SuperMAG station locations in geographic coordinates

which contributed data during 2001. Permanent observatories (numbering 47) are shown

as blue dots, variometers (78) as red dots. (b) Example of the bin layout for the first

5 minutes of February 2001. Bin colours relate to the magnitude of the binned data –

empty bins are white. Here the stations are shown in QD coordinates.
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Figure 2. Spatial variation of the temporal mean of the horizontal component of the

EIMF for February 2001. The data are shown in QD coordinates where the outer circle

corresponds to 49◦ magnetic latitude and the labels around the outer circle indicate MLT.

Colour indicates the θ-component of the mean magnetic field vector in each equal-area

averaging region. Vectors stem from a dot at the centroid of each bin indicate the direction

and strength of the corresponding equivalent currents. The binned data are means of 5-

minute-averaged magnetic data, sampled to the QD-frame bins, after removal of baselines

from each station time series.
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Figure 3. Various indicators of proportions of the original data explained by modes

1–10. (a) Proportion of variance of original data explained by modes 1–10. (b) RMS

values of the original binned data. (c) RMS values of the original data minus prediction

of modes 1–6, using the same colour map as Figure 3(b) to aid comparison. (d) Same data

as panel (c) but using a colour map which is saturated to the true range of the plotted

data.
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Figure 4. DP2 current modes. (a) Mode 1 normalised horizontal-component equivalent

current spatial pattern with mode 1 temporal series and epsilon index shown underneath.

(b) As the top two parts of panel (a), but for mode 3. The equivalent current vectors and

associated colours of the modes’ spatial patterns are in the same format as Figure 2, except

that here the vectors are normalised. The perturbation magnitude for the mode is given

by the multiplication of the normalised EOF eigenvector with its associated temporal

series.
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Figure 5. The average evolution of the DP2 equivalent currents given by modes

1 and 3 during a substorm. (a) The time series of mode 1 (blue) and mode 3 (red)

amplitudes, individually superimposed and averaged with respect to the substorm onset

epochs described in the main text. The thick black vertical line denotes the substorm

epoch. Grey vertical lines labelled (1)–(4) indicate the reconstruction times at −40, −5,

+5 and +50 minutes used in panels (c)–(f) respectively. (b) Time series of the latitude

at which the θ-component crosses a value of zero for a sum of the background mean

(Figure 2) and modes 1 and 3 (Figures 4(a) and 4(b)), each reconstructed using the mean

mode amplitude shown in panel (a). The latitude of the zero crossing is computed at

02:10 MLT, the meridian where mode 1 peaks. The horizontal dashed line is the zero-

crossing latitude of the background mean pattern. The vertical line indicates the substorm

onset epoch. (c)–(f) Each panel shows a latitudinal cross-section at 02:10 MLT of mode 1

(blue line), mode 3 (red), the background mean (black) and the sum of all these (green).

Respectively, panel (c), (d), (e), (f) corresponds to the grey line (1), (2), (3), (4) in panel

(a), illustrating the sequence of the substorm. The two vertical dashed lines in each panel

are the zero-crossing latitudes of the mean (black) and sum (green) spatial patterns.
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Figure 6. Mode 2 normalised spatial pattern and temporal series, in the same format

as Figure 4(b).

Figure 7. Normalised spatial patterns and temporal series for modes 4, 5 and 6

respectively in panels (a), (b) and (c), each in the same format as Figure 4(b).
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Figure 8. The average evolution of the DP1 equivalent current modes 2, 4, 5, and 6

during a substorm. (a) The time series of each of the modes 2 (green), 4 (red), 5 (light

blue) and 6 (dark blue) amplitudes has been individually superimposed and averaged with

respect to the substorm onset epochs described in the main text. The black vertical line

denotes the substorm epoch. The black solid curve is a model substorm response, given

by Equation (6). (b) Time series of the latitude at which the θ-component crosses a value

of zero for a sum of the background mean (Figure 2) and modes 2, 4, 5 and 6 (Figures 6

and 7), each reconstructed using the mean mode amplitude shown in panel (a). The

latitudes are computed at 23:20 MLT, the meridian where the mode 2 amplitude peaks.

The horizontal dashed line is the zero-crossing latitude of the background mean pattern.

The vertical line indicates the substorm onset epoch. (c) Time series of the longitude

(computed from QD MLT ∗ 15) of the θ-component zero-crossing for the same sum of

modes as in panel (b). The longitudes are computed at a latitude of 69◦ (approximately

the mode 2 peak latitude) and between 18:00 and 24:00 MLT. The horizontal dashed line

is the zero-crossing longitude of the background mean pattern. The vertical line indicates

the substorm onset epoch.
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