94 research outputs found
Biochar Supplementation in Growing and Finishing Diets
Two metabolism studies were conducted to evaluate the effects of biochar (0, 0.8, or 3% of diet dry matter) on digestibility and methane production in growing and finishing diets. Intake was not affected by biochar inclusion in the growing diet and increased with 0.8% biochar inclusion in the finishing study. Digestibility tended to increase quadratically with biochar inclusion in the growing study while digestibility tended to linearly decrease with biochar inclusion in the finishing study. Methane production (g/d) decreased 10.7% in the growing study and 9.9% in the finishing study with 0.8% biochar compared to no biochar. Methane production was reduced 10.6% and 18.4% in the growing and finishing studies, respectively, when measured as g/lb of intake. Although biochar is not FDA approved for animal feeding, the initial research shows potential as a methane mitigation strategy in both growing and finishing diets
Spin gap in the Quasi-One-Dimensional S=1/2 Antiferromagnet: Cu2(1,4-diazacycloheptane)2Cl4
Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4} contains double chains of spin 1/2
Cu^{2+} ions. We report ac susceptibility, specific heat, and inelastic neutron
scattering measurements on this material. The magnetic susceptibility,
, shows a rounded maximum at T = 8 K indicative of a low dimensional
antiferromagnet with no zero field magnetic phase transition. We compare the
data to exact diagonalization results for various one dimensional
spin Hamiltonians and find excellent agreement for a spin ladder with
intra-rung coupling meV and two mutually frustrating
inter-rung interactions: meV and meV. The
specific heat in zero field is exponentially activated with an activation
energy meV. A spin gap is also found through inelastic
neutron scattering on powder samples which identify a band of magnetic
excitations for meV. Using sum-rules we derive an
expression for the dynamic spin correlation function associated with
non-interacting propagating triplets in a spin ladder. The van-Hove
singularities of such a model are not observed in our scattering data
indicating that magnetic excitations in Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4}
are more complicated. For magnetic fields above T specific
heat data versus temperature show anomalies indicating a phase transition to an
ordered state below T = 1 K.Comment: 9 pages, 8 postscript figures, LaTeX, Submitted to PRB 8/4/97, e-mail
Comments to [email protected]
Microwave sensor system for continuous monitoring of adhesive curing processes
A microwave sensor system has been developed for monitoring adhesive curing processes. The system provides continuous, real-time information about the curing progress without interfering with the reaction. An open-coaxial resonator is used as the sensor head, and measurements of its resonance frequency and quality factor are performed during cure to follow the reaction progress. Additionally, the system provides other interesting parameters such as reaction rate or cure time. The adhesive dielectric properties can also be computed off-line, which gives additional information about the process. The results given by the system correlate very well with conventional measurement techniques such as differential scanning calorimetry, combining accuracy and rate with simplicity and an affordable cost. © 2012 IOP Publishing Ltd.The authors thank Rut Benavente Martinez for her assistance in the DSC experiments. The contract of BG-B is financed by the Ministry of Science and Innovation of Spain, through the 'Torres Quevedo' Sub-programme, which is also co-financed by the European Social Fund (ESF). This work has been financed by the Ministry of Science and Innovation of Spain through the project MONIDIEL (TEC2008-04109).García Baños, B.; Catalá Civera, JM.; Penaranda-Foix, FL.; Canós Marín, AJ.; Sahuquillo Navarro, O. (2012). Microwave sensor system for continuous monitoring of adhesive curing processes. Measurement Science and Technology. 23(3). https://doi.org/10.1088/0957-0233/23/3/035101S233Jost, M., & Sernek, M. (2008). Shear strength development of the phenol–formaldehyde adhesive bond during cure. Wood Science and Technology, 43(1-2), 153-166. doi:10.1007/s00226-008-0217-2Costa, M. L., Botelho, E. C., Paiva, J. M. F. de, & Rezende, M. C. (2005). Characterization of cure of carbon/epoxy prepreg used in aerospace field. Materials Research, 8(3), 317-322. doi:10.1590/s1516-14392005000300016Chen, J., & Hojjati, M. (2007). Microdielectric analysis and curing kinetics of an epoxy resin system. Polymer Engineering & Science, 47(2), 150-158. doi:10.1002/pen.20687Sernek, M., & Kamke, F. A. (2007). Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive. International Journal of Adhesion and Adhesives, 27(7), 562-567. doi:10.1016/j.ijadhadh.2006.10.004Núñez, L., Gómez-Barreiro, S., Gracia-Fernández, C. A., & Núñez, M. R. (2004). Use of the dielectric analysis to complement previous thermoanalytical studies on the system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane. Polymer, 45(4), 1167-1175. doi:10.1016/j.polymer.2003.12.024Lefebvre, D. R., Han, J., Lipari, J. M., Long, M. A., McSwain, R. L., & Wells, H. C. (2006). Dielectric analysis for in-situ monitoring of gelatin renaturation and crosslinking. Journal of Applied Polymer Science, 101(5), 2765-2775. doi:10.1002/app.21631Cordovez, M., Li, Y., & Karbhari, V. M. (2004). Assessment of Dielectrometry for Characterization of Processing and Moisture Absorption in FRP Composites. Journal of Reinforced Plastics and Composites, 23(4), 445-456. doi:10.1177/0731684404031980Das, N. K., Voda, S. M., & Pozar, D. M. (1987). Two Methods for the Measurement of Substrate Dielectric Constant. IEEE Transactions on Microwave Theory and Techniques, 35(7), 636-642. doi:10.1109/tmtt.1987.1133722Fioretto, D., Livi, A., Rolla, P. A., Socino, G., & Verdini, L. (1994). The dynamics of poly(n-butyl acrylate) above the glass transition. Journal of Physics: Condensed Matter, 6(28), 5295-5302. doi:10.1088/0953-8984/6/28/007Givot, B. L., Krupka, J., & Belete, D. Y. (s. f.). Split post dielectric resonator technique for dielectric cure monitoring of structural adhesives. 13th International Conference on Microwaves, Radar and Wireless Communications. MIKON - 2000. Conference Proceedings (IEEE Cat. No.00EX428). doi:10.1109/mikon.2000.913931Canos, A. J., Catala-Civera, J. M., Penaranda-Foix, F. L., & Reyes-Davo, E. (2006). A novel technique for deembedding the unloaded resonance frequency from measurements of microwave cavities. IEEE Transactions on Microwave Theory and Techniques, 54(8), 3407-3416. doi:10.1109/tmtt.2006.877833Marks, R. B., & Williams, D. F. (1992). A general waveguide circuit theory. Journal of Research of the National Institute of Standards and Technology, 97(5), 533. doi:10.6028/jres.097.024Harrington, R. F. (1967). Matrix methods for field problems. Proceedings of the IEEE, 55(2), 136-149. doi:10.1109/proc.1967.5433Baker-Jarvis, J., Janezic, M. D., Domich, P. D., & Geyer, R. G. (1994). Analysis of an open-ended coaxial probe with lift-off for nondestructive testing. IEEE Transactions on Instrumentation and Measurement, 43(5), 711-718. doi:10.1109/19.328897Taylor, B. N. (1994). Guidelines for evaluating and expressing the uncertainty of NIST measurement results. doi:10.6028/nist.tn.1297Casalini, R., Corezzi, S., Livi, A., Levita, G., & Rolla, P. A. (1997). Dielectric parameters to monitor the crosslink of epoxy resins. Journal of Applied Polymer Science, 65(1), 17-25. doi:10.1002/(sici)1097-4628(19970705)65:13.0.co;2-tPreu, H., & Mengel, M. (2007). Experimental and theoretical study of a fast curing adhesive. International Journal of Adhesion and Adhesives, 27(4), 330-337. doi:10.1016/j.ijadhadh.2006.06.004Harper, D. P., Wolcott, M. P., & Rials, T. G. (2001). Evaluation of the cure kinetics of the wood/pMDI bondline. International Journal of Adhesion and Adhesives, 21(2), 137-144. doi:10.1016/s0143-7496(00)00045-2Garcia-Banos, B., Canos, A. J., Penaranda-Foix, F. L., & Catala-Civera, J. M. (2011). Noninvasive Monitoring of Polymer Curing Reactions by Dielectrometry. IEEE Sensors Journal, 11(1), 62-70. doi:10.1109/jsen.2010.2050475He, Y. (2001). DSC and DEA studies of underfill curing kinetics. Thermochimica Acta, 367-368, 101-106. doi:10.1016/s0040-6031(00)00654-7Núñez-Regueira, L., Gracia-Fernández, C. A., & Gómez-Barreiro, S. (2005). Use of rheology, dielectric analysis and differential scanning calorimetry for gel time determination of a thermoset. Polymer, 46(16), 5979-5985. doi:10.1016/j.polymer.2005.05.06
Global Health Governance and the Commercial Sector: A Documentary Analysis of Tobacco Company Strategies to Influence the WHO Framework Convention on Tobacco Control
Heide Weishaar and colleagues did an analysis of internal tobacco industry documents together with other data and describe the industry's strategic response to the proposed World Health Organization Framework Convention on Tobacco Control
Satellite Sensor Requirements for Monitoring Essential Biodiversity Variables of Coastal Ecosystems
The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibratio
Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.National Center for Ecological Analysis and Synthesis (NCEAS);
National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A;
National Ocean Partnership Program;
NOAA US Integrated Ocean Observing System/IOOS Program Office;
Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC0000
The Policy Dystopia Model:an interpretive analysis of tobacco industry political activity
BACKGROUND: Tobacco industry interference has been identified as the greatest obstacle to the implementation of evidence-based measures to reduce tobacco use. Understanding and addressing industry interference in public health policy-making is therefore crucial. Existing conceptualisations of corporate political activity (CPA) are embedded in a business perspective and do not attend to CPA's social and public health costs; most have not drawn on the unique resource represented by internal tobacco industry documents. Building on this literature, including systematic reviews, we develop a critically informed conceptual model of tobacco industry political activity. METHODS AND FINDINGS: We thematically analysed published papers included in two systematic reviews examining tobacco industry influence on taxation and marketing of tobacco; we included 45 of 46 papers in the former category and 20 of 48 papers in the latter (n = 65). We used a grounded theory approach to build taxonomies of "discursive" (argument-based) and "instrumental" (action-based) industry strategies and from these devised the Policy Dystopia Model, which shows that the industry, working through different constituencies, constructs a metanarrative to argue that proposed policies will lead to a dysfunctional future of policy failure and widely dispersed adverse social and economic consequences. Simultaneously, it uses diverse, interlocking insider and outsider instrumental strategies to disseminate this narrative and enhance its persuasiveness in order to secure its preferred policy outcomes. Limitations are that many papers were historical (some dating back to the 1970s) and focused on high-income regions. CONCLUSIONS: The model provides an evidence-based, accessible way of understanding diverse corporate political strategies. It should enable public health actors and officials to preempt these strategies and develop realistic assessments of the industry's claims
EXPORTS Measurements and Protocols for the NE Pacific Campaign
EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology
Методология синтеза архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки
Предложен подход к проектированию архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки в реальном времени, основанный на классификации решаемых функциональных задач на основе методов кластерного анализа и выбранного множества признаков подобия. Разработанный подход позволяет из множества функций системы выделить подобные (по определенным признакам) и объединить их в архитектурные компоненты (унифицированные функциональные модули).Запропоновано підхід до проектування архітектури центру обробки інформації автоматизованої системи моніторингу середовища в реальному часі, що заснований на класифікації функціональних задач на підставі методів кластерного аналізу і обраної множини ознак схожості. Розроблений підхід дозволяє вибрати із множини функцій системи схожі (за певними ознаками) і поєднати їх в архітектурні компоненти (уніфіковані функціональні модулі).The approach to designing architecture of the information processing complex of the automated real time conditions monitoring system based on classification of functional tasks on the basis of methods of cluster analysis and the chosen set of similarity attributes is offered. The developed approach allows to allocate from a set of functions the systems similar (on certain attributes) and to unite them in architectural components (unified functional modules)
Understanding the retinal basis of vision across species
The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision
- …