1,623 research outputs found

    Controlled Contact to a C60 Molecule

    Get PDF
    The conductance of C60 on Cu(100) is investigated with a low-temperature scanning tunneling microscope. At the transition from tunneling to the contact regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is observed upon further decreasing the distance between the instrument's tip and the surface. Ab-initio calculations within density functional theory and non-equilibrium Green's function techniques explain the experimental data in terms of the conductance of an essentially undeformed C60. From a detailed analysis of the crossover from tunneling to contact we conclude that the conductance in this region is strongly affected by structural fluctuations which modulate the tip-molecule distance.Comment: 4 pages, 3 figure

    Non-relativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas

    Full text link
    We show that the Weibel-mediated collisionless shocks are driven at non-relativistic propagation speed (0.1c < V < 0.45c) in unmagnetized electron-ion plasmas by performing two-dimensional particle-in-cell simulations. It is shown that the profiles of the number density and the mean velocity in the vicinity of the shock transition region, which are normalized by the respective upstream values, are almost independent of the upstream bulk velocity, i.e., the shock velocity. In particular, the width of the shock transition region is ~100 ion inertial length independent of the shock velocity. For these shocks the energy density of the magnetic field generated by the Weibel-type instability within the shock transition region reaches typically 1-2% of the upstream bulk kinetic energy density. This mechanism probably explains the robust formation of collisionless shocks, for example, driven by young supernova remnants, with no assumption of external magnetic field in the universe.Comment: 4 pages, 7 figures, accepted for publication in ApJ Letter

    Modeling of inelastic transport in one-dimensional metallic atomic wires

    Get PDF
    Inelastic effects in electron transport through nano-sized devices are addressed with a method based on nonequilibrium Green's functions (NEGF) and perturbation theory to infinite order in the electron-vibration coupling. We discuss the numerical implementation which involves an iterative scheme to solve a set of coupled non-linear equations for the electronic Green's functions and the self-energies due to vibrations. To illustrate our method, we apply it to a one-dimensional single-orbital tight-binding description of the conducting electrons in atomic gold wires, and show that this simple model is able to capture most of the essential physics.Comment: 4 pages, 4 figures, Contribution to International Workshop on Computational Electronics (IWCE-10

    Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition

    Full text link
    Researchers have studied the normal-superconducting phase transition in the high-TcT_c cuprates in a magnetic field (the vortex-glass or Bose-glass transition) and in zero field. Often, transport measurements in "zero field" are taken in the Earth's ambient field or in the remnant field of a magnet. We show that fields as small as the Earth's field will alter the shape of the current vs. voltage curves and will result in inaccurate values for the critical temperature TcT_c and the critical exponents ν\nu and zz, and can even destroy the phase transition. This indicates that without proper screening of the magnetic field it is impossible to determine the true zero-field critical parameters, making correct scaling and other data analysis impossible. We also show, theoretically and experimentally, that the self-field generated by the current flowing in the sample has no effect on the current vs. voltage isotherms.Comment: 4 pages, 4 figure

    Normal-Superconducting Phase Transition Mimicked by Current Noise

    Full text link
    As a superconductor goes from the normal state into the superconducting state, the voltage vs. current characteristics at low currents change from linear to non-linear. We show theoretically and experimentally that the addition of current noise to non-linear voltage vs. current curves will create ohmic behavior. Ohmic response at low currents for temperatures below the critical temperature TcT_c mimics the phase transition and leads to incorrect values for TcT_c and the critical exponents ν\nu and zz. The ohmic response occurs at low currents, when the applied current I0I_0 is smaller than the width of the probability distribution σI\sigma_I, and will occur in both the zero-field transition and the vortex-glass transition. Our results indicate that the transition temperature and critical exponents extracted from the conventional scaling analysis are inaccurate if current noise is not filtered out. This is a possible explanation for the wide range of critical exponents found in the literature.Comment: 4 pages, 2 figure

    Det danske Agerbrugs Fremskridt siden 1769.

    Get PDF
    Det danske Agerbrugs Fremskridt siden 1769

    Bayesian Error Estimation in Density Functional Theory

    Full text link
    We present a practical scheme for performing error estimates for Density Functional Theory calculations. The approach which is based on ideas from Bayesian statistics involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies for molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to experiment on calculated quantities like binding energies, bond lengths, and vibrational frequencies. It is demonstrated that the error bars on energy differences may vary by orders of magnitude for different systems in good agreement with existing experience.Comment: 5 pages, 3 figure

    On the mechanical and electronic properties of thiolated gold nanocrystals

    Get PDF
    This article is part of themed collection: 2015 Hot Papers in Nanoscale.-- arXiv:1412.7698v1.-- et al.We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single nanoparticle (NP) level. We determined the response of the NPs to external pressure in a controlled manner using an atomic force microscope tip. We found a strong reduction in their Young's modulus, as compared to bulk gold, and a significant influence of strain on the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases by increasing the applied load, which translates in a remarkable and unprecedented increase in the tunnel current. These observations are successfully explained using simulations based on the finite element analysis (FEA) and first-principles calculations that permit one to consider the coupling between the mechanical response of the system and the electric dipole variations at the interface.P.L. is a Senior Research Associate from the Fund for Scientific Research of Belgium (F.R.S. – FNRS). K.S. has been supported by the NordPas-de Calais Council fund and the ANR project SAGE III-V (no. ANR11BS1001203) and S.D. by EU project I-ONE (FP7 no. 280772). The experiments were partly funded by the SINGLEMOL project supported by the Nord-Pas-de Calais council fund. We also acknowledge funding from the Basque Government (Grant No. IT-756-13) and the Spanish MINECO (Grant Nos. MAT2013-46593-C6-2-P and FIS2013-48286-C2-2-P).Peer Reviewe

    Inelastic quantum transport: the self-consistent Born approximation and correlated electron-ion dynamics

    Get PDF
    A dynamical method for inelastic transport simulations in nanostructures is compared with a steady-state method based on non-equilibrium Green's functions. A simplified form of the dynamical method produces, in the steady state in the weak-coupling limit, effective self-energies analogous to those in the Born Approximation due to electron-phonon coupling. The two methods are then compared numerically on a resonant system consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits enhanced heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the static and dynamical methods capture local current-induced heating and inelastic corrections to the current with good agreement over a wide range of conditions, except in the limit of very high vibrational excitations, where differences begin to emerge.Comment: 12 pages, 7 figure
    corecore