Researchers have studied the normal-superconducting phase transition in the
high-Tc cuprates in a magnetic field (the vortex-glass or Bose-glass
transition) and in zero field. Often, transport measurements in "zero field"
are taken in the Earth's ambient field or in the remnant field of a magnet. We
show that fields as small as the Earth's field will alter the shape of the
current vs. voltage curves and will result in inaccurate values for the
critical temperature Tc and the critical exponents ν and z, and can
even destroy the phase transition. This indicates that without proper screening
of the magnetic field it is impossible to determine the true zero-field
critical parameters, making correct scaling and other data analysis impossible.
We also show, theoretically and experimentally, that the self-field generated
by the current flowing in the sample has no effect on the current vs. voltage
isotherms.Comment: 4 pages, 4 figure