69 research outputs found

    The structure of a Bacteroides thetaiotaomicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome

    Get PDF
    Funding Information: We thank Prof. Carlos Fontes and Dr Joana Bras (NZYTech, Portugal) for their assistance in obtaining the initial BT0996-C clone. We are grateful to Prof Ten Feizi, Dr Yan Liu and Dr Lisete Silva from the Glycosciences Laboratory (Imperial College London, UK) for their support and assistance on robotic microarray printing. This work was supported by the FCT - Fundação para a Ciência e a Tecnologia, I.P., through the DL-57/2016 Program Contract (BP). This work is financed by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HB. The authors acknowledge the European Synchrotron Radiation Facility (Grenoble, France) and ALBA (Barcelona, Spain) for access to beamlines ID30B and BL-13 XALOC, respectively. Publisher Copyright: © 2022The Bacteroides thetaiotaomicron has developed a consortium of enzymes capable of overcoming steric constraints and degrading, in a sequential manner, the complex rhamnogalacturonan II (RG-II) polysaccharide. BT0996 protein acts in the initial stages of the RG-II depolymerisation, where its two catalytic modules remove the terminal monosaccharides from RG-II side chains A and B. BT0996 is modular and has three putative carbohydrate-binding modules (CBMs) for which the roles in the RG-II degradation are unknown. Here, we present the characterisation of the module at the C-terminal domain, which we designated BT0996-C. The high-resolution structure obtained by X-ray crystallography reveals that the protein displays a typical β-sandwich fold with structural similarity to CBMs assigned to families 6 and 35. The distinctive features are: 1) the presence of several charged residues at the BT0996-C surface creating a large, broad positive lysine-rich patch that encompasses the putative binding site; and 2) the absence of the highly conserved binding-site signatures observed in CBMs from families 6 and 35, such as region A tryptophan and region C asparagine. These findings hint at a binding mode of BT0996-C not yet observed in its homologues. In line with this, carbohydrate microarrays and microscale thermophoresis show the ability of BT0996-C to bind α1-4-linked polygalacturonic acid, and that electrostatic interactions are essential for the recognition of the anionic polysaccharide. The results support the hypothesis that BT0996-C may have evolved to potentiate the action of BT0996 catalytic modules on the complex structure of RG-II by binding to the polygalacturonic acid backbone sequence.publishersversionpublishe

    Distribution of common peroneal nerve in equine fetuses and anatomical description of sites for anesthetic block

    Get PDF
    Analisou-se a distribuição do nervo fibular comum em 30 fetos de equinos, sem raça definida, provenientes do acervo do Laboratório de Anatomia Animal da Faculdade de Medicina Veterinária da Universidade Federal de Uberlândia, que foram injetados e conservados em solução aquosa de formaldeído a 10%. Contatou-se que o referido nervo deriva do isquiático, divide-se em nervos fibulares superficial e profundo, distribuindo-se para os músculos extensores lateral e longo do dedo, fibular terceiro e tibial cranial. Traçando-se uma linha imaginária na região médio-lateral da tuberosidade do osso tíbia, o nervo fibular comum pode ser bloqueado em sua parte proximal, no terço caudal, entre o tendão de inserção do músculo bíceps femoral e a face lateral do músculo gastrocnêmio lateral (terço médio); e o nervo fibular profundo, na parte proximal da tíbia, crânio-distalmente ao fibular comum. O bloqueio do nervo fibular superficial pode ser realizado em duas regiões da tíbia: na proximal, considerando-se a linha imaginária, distalmente ao ponto citado para o fibular comum e caudalmente ao descrito para o fibular profundo; e na distal, na face lateral da articulação tíbio-társica, entre os tendões de inserção dos músculos extensores lateral e longo do dedo.Iglesias L.P., Silva F.O.C., Vasconcelos B.G., Ribeiro L.A., Hodniki N.F., Gomes L.R., Miglino M.A. & Melo A.P.F. 2012. [Distribution of common peroneal nerve in equine fetuses and anatomical description of sites for anesthetic block.] Distribuicao do nervo fibular comum em fetos de equinos e descricao anatomica de pontos para bloqueio anestesico. Pesquisa Veterinaria Brasileira 32(7):672-676. Departamento de Anatomia Animal, Faculdade de Medicina Veterinaria, Universidade Federal de Uberlandia, Rua Ceara s/n, Bloco 2D, Uberlandia, MG 38400-902, Brazil. E-mail: [email protected] The distribution of the nervus fibularis communis was analyzed in 30 equine fetuses, mongrel, from the collection of the Animal Anatomy Laboratory at the School of Veterinary Medicine of Universidade Federal de Uberlandia, which were injected and stored in an aqueous solution of 10% formaldehyde. It was found that this nerve emerges from the ischiadicus, divides itself into nervus fibularis profundus and nervus fibularis super ficialis distributing to the musculi extensor digitorum lateralis, extensor digitorum longus, fibularis tertius, and tibialis cranialis. Drawing an imaginary line in the medial-lateral region of the tuberositatis tibia, the nervus fibularis communis may be blocked in its proximal portion, in the caudal third, between the tendon of insertion of the biceps femoris and the lateral side of the musculus gastrocnemius (medium third); and the nervus fibularis profundus may be blocked in the proximal tibia, cranio-distally to the nervus fibularis communis. The block of nervus fibularis profundus may be performed in two regions of the tibia: proximal, considering the imaginary line, distal to the site referred to the nervus fibularis communis, and caudal to that described for the nervus fibularis profundus; and distal, on the lateral side of the tibiotarsal joint, between the tendons of insertion of the musculi extensor digitorum lateralis and extensor digitorum longus

    Influence of cooling methods on the residual mechanical behavior of fire-exposed concrete : an experimental study.

    Get PDF
    This work reports the main conclusions of a study on the mechanical behavior of concrete under ISO 834 fire with different cooling methods. The aim of this research was to provide reliable data for the analysis of structures damaged by fire. The experimental program used cylindrical concrete test specimens subjected to ISO 834 heating in a furnace up to maximum gas temperatures of 400, 500, 600, 700, and 800 ?C. The compressive strength was measured in three situations: (a) at the different temperature levels reached in the furnace; (b) after a natural cooling process; and (c) after aspersion with water at ambient temperature. The results indicate that the concrete residual compressive strength is fairly dependent on the maximum temperature reached in the furnace and revealed that concrete of a lower strength preserved relatively higher levels of strength. The cooling method significantly influenced the strength, albeit at a lower intensity. In all cases, the residual strength remained in the range of 38% to 67% of the strength at ambient temperature. The statistical analysis showed that the data obtained by the experimental program are significant and confirmed the influence of the conditions imposed on the residual strength

    Guidelines for the management of neuroendocrine tumours by the Brazilian gastrointestinal tumour group

    Get PDF
    Neuroendocrine tumours are a heterogeneous group of diseases with a significant variety of diagnostic tests and treatment modalities. Guidelines were developed by North American and European groups to recommend their best management. However, local particularities and relativisms found worldwide led us to create Brazilian guidelines. Our consensus considered the best feasible strategies in an environment involving more limited resources. We believe that our recommendations may be extended to other countries with similar economic standards.Univ Sao Paulo, Inst Canc Estado Sao Paulo, BR-01246000 Sao Paulo, BrazilUniv Sao Paulo, Fac Med, Dept Radiol & Oncol, BR-01246903 Sao Paulo, BrazilHosp Sirio Libanes, BR-01308050 Sao Paulo, BrazilHosp Moinhos de Vento Porto Alegre, BR-90035000 Porto Alegre, RS, BrazilOncoctr, BR-30360680 Belo Horizonte, MG, BrazilUniv Fed Rio Grande do Sul, Dept Cirurgia, BR-90040060 Porto Alegre, RS, BrazilHosp Clin Porto Alegre, BR-90035903 Porto Alegre, RS, BrazilUniv Fed Ceara, Fac Med, Dept Fisiol & Farmacol, BR-60020180 Fortaleza, Ceara, BrazilHosp Univ Walter Cantidio, BR-60430370 Fortaleza, Ceara, BrazilInst Nacl Canc, BR-20230240 Rio De Janeiro, BrazilUniv Sao Paulo, Fac Med, Disciplina Endocrinol & Metabol, BR-01246903 Sao Paulo, BrazilAC Camargo Canc Ctr, Dept Surg, BR-01509010 Sao Paulo, BrazilUniv Sao Paulo, Fac Med, Dept Gastroenterol, Sao Paulo, BrazilUniv Fed Ciencias Saude Porto Alegre, BR-90050170 Porto Alegre, RS, BrazilHosp Albert Einstein, BR-05652900 Sao Paulo, BrazilHosp Base, Fac Med Sao Jose do Rio Preto, BR-15090000 Sao Paulo, BrazilSanta Casa Sao Jose do Rio Preto, BR-15025500 Sao Jose Do Rio Preto, BrazilPontificia Univ Catolica Parana, Hosp Erasto Gaertner, BR-81520060 Curitiba, Parana, BrazilUniv Fed Rio Grande do Norte, BR-59300000 Natal, RN, BrazilUniv Sao Paulo, Inst Coracao, BR-05403900 Sao Paulo, BrazilAC Camargo Canc Ctr, Med Oncol, BR-01509010 Sao Paulo, BrazilUniv Fed Sao Paulo, Disciplina Gastroenterol, BR-04021001 Sao Paulo, BrazilHosp Sao Rafael, BR-41253190 Salvador, BA, BrazilHosp Canc Barretos, Dept Cirurgia Aparelho Digest Alto & Hepatobiliop, BR-14784400 Sao Paulo, BrazilUniv Sao Paulo, Fac Med, Dept Patol, BR-01246903 Sao Paulo, BrazilClin AMO, BR-1950640 Salvador, BA, BrazilHosp Sao Jose, BR-01323001 Sao Paulo, BrazilUniv Nove de Julho, BR-02111030 Sao Paulo, BrazilUniv Fed Sao Paulo, Disciplina Gastroenterol, BR-04021001 Sao Paulo, BrazilWeb of Scienc

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    • …
    corecore