12 research outputs found

    Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans

    Get PDF
    Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of inconsistencies in xenarthran systematics and species definition. We propose to split armadillos in two distinct families Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their ancient divergence, estimated around 42 million years ago. Species delimitation within long-nosed armadillos (genus Dasypus) appeared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed during the last 15 million years. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the Guianan shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry habitats.Fil: Gibb, Gillian C.. Universite de Montpellier; Francia. Massey Universit; Nueva ZelandaFil: Condamine, Fabien L.. University of Gothenburg; Suecia. Universite de Montpellier; Francia. University of Alberta; CanadĂĄFil: Kuch, Melanie. McMaster University; CanadĂĄFil: Enk, Jacob. McMaster University; CanadĂĄFil: Moraes Barros, Nadia. Universidade Do Porto; Portugal. Universidade de Sao Paulo; BrasilFil: Superina, Mariella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂ­a Experimental de Cuyo; ArgentinaFil: Poinar, Hendrik N.. McMaster University; CanadĂĄFil: Delsuc, Frederic. Universite de Montpellier; Franci

    Assembling the Tree of Life in Europe (AToLE)

    Get PDF
    A network of scientists under the umbrella of 'Assembling the Tree of Life in Europe (AToLE)' seeks funding under the FP7-Theme: Cooperation - Environment (including Climate Change and Biodiversity Conservation) programme of the European Commission.
&#xa

    Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus vellerosus) in Argentina revealed by a set of novel microsatellite loci

    Get PDF
    The screaming hairy armadillo (Chaetophractus vellerosus) is a mammal species containing disjunct and isolated populations. In order to assess the effect of habitat fragmentation and geographic isolation, we developed seven new microsatellite loci isolated from low-coverage genome shotgun sequencing data for this species. Among these loci, six microsatellites were found to be polymorphic with 8 to 26 alleles per locus detected across 69 samples analyzed from a relictual population of the species located in the northeast of the Buenos Aires Province (Argentina). Mean allelic richness and polymorphic information content were 15 and 0.75, with observed and expected heterozygosities ranging from 0.40 to 0.67 and 0.58 to 0.90, respectively. All loci showed departures from Hardy-Weinberg equilibrium. The analysis of population structure in this relictual population revealed three groups of individuals that are genetically differentiated. These newly developed microsatellites will constitute a very useful tool for the estimation of genetic diversity and structure, population dynamics, social structure, parentage and mating system in this little-studied armadillo species. Such genetic data will be particularly helpful for the development of conservation strategies for this isolated population and also for the endangered Bolivian populations previously recognized as a distinct species (Chaetophractus nationi).Centro de Estudios ParasitolĂłgicos y de Vectore

    Pangolin genomes offer key insights and resources for the world's most trafficked wild mammals

    Get PDF
    DATA AVAILABILITY : Draft genomes (Manis culionensis, M. crassicaudata, Phataginus tetradactyla, Smutsia temminckii) and the hybrid assembled, annotated reference genome with associated metadata (S. gigantea) are available in the GenBank Nucleotide Database (BioProject: PRJNA795390). The associated sequence read data have also been deposited in Genbank (SRA: SRR17702824-SRR17702828) for the aforementioned genomes (except for S. temminckii). The accession numbers or links for all accessed genomic data are listed in supplementary table S1, Supplementary Material online. A database containing the list genes ranked by diversity amongst all eight pangolin species has been deposited at Zenodo and is publicly available (supplementary Database S1, Supplementary Material online: https://doi.org/10.5281/zenodo.7517409). All original code in the form of custom scripts for processing the genomics data in this study have also been deposited at Zenodo and are publicly available (Custom scripts 1–3: https://doi.org/10.5281/zenodo.7517409). Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.Pangolins form a group of scaly mammals that are trafficked at record numbers for their meat and purported medicinal properties. Despite their conservation concern, knowledge of their evolution is limited by a paucity of genomic data. We aim to produce exhaustive genomic resources that include 3,238 orthologous genes and whole-genome polymorphisms to assess the evolution of all eight extant pangolin species. Robust orthologous gene-based phylogenies recovered the monophyly of the three genera and highlighted the existence of an undescribed species closely related to Southeast Asian pangolins. Signatures of middle Miocene admixture between an extinct, possibly European, lineage and the ancestor of Southeast Asian pangolins, provide new insights into the early evolutionary history of the group. Demographic trajectories and genome-wide heterozygosity estimates revealed contrasts between continental versus island populations and species lineages, suggesting that conservation planning should consider intraspecific patterns. With the expected loss of genomic diversity from recent, extensive trafficking not yet realized in pangolins, we recommend that populations be genetically surveyed to anticipate any deleterious impact of the illegal trade. Finally, we produce a complete set of genomic resources that will be integral for future conservation management and forensic endeavors for pangolins, including tracing their illegal trade. These comprise the completion of whole-genomes for pangolins through the hybrid assembly of the first reference genome for the giant pangolin (Smutsia gigantea) and new draft genomes (∌43x–77x) for four additional species, as well as a database of orthologous genes with over 3.4 million polymorphic sites.The Agence Nationale de la Recherche, European Research Council, Mohamed bin Zayed Species Conservation Fund, the National Research Foundation of South Africa and the National Natural Science Foundation of China.https://academic.oup.com/mbehj2024Mammal Research InstituteZoology and EntomologySDG-15:Life on lan

    Genome-scale phylogeny and the detection of systematic biases

    No full text
    Phylogenetic inference from sequences can be misled by both sampling (stochastic) error and systematic error (nonhistorical signals where reality differs from our simplified models). A recent study of eight yeast species using 106 concatenated genes from complete genomes showed that even small internal edges of a tree received 100% bootstrap support. This effective negation of stochastic error from large data sets is important, but longer sequences exacerbate the potential for biases (systematic error) to be positively misleading. Indeed, when we analyzed the same data set using minimum evolution optimality criteria, an alternative tree received 100% bootstrap support. We identified a compositional bias as responsible for this inconsistency and showed that it is reduced effectively by coding the nucleotides as purines and pyrimidines (RY-coding), reinforcing the original tree. Thus, a comprehensive exploration of potential systematic biases is still required, even though genome-scale data sets greatly reduce sampling error

    Phylotranscriptomic consolidation of the jawed vertebrate timetree

    Get PDF
    Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on ‘standards’ for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as a model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes, and some relationships remain controversial. We tested a new bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and found this phylotranscriptomic approach to be successful and highly cost-effective. Increased sequencing effort up to about 10 Gbp allows more genes to be recovered, but shallower sequencing (1.5 Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculï»żaï»żting genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large, curated, nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.publishe

    Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family

    No full text
    Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high-copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000x, 450x and 120x sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost-effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under-studied groups
    corecore