9 research outputs found

    ANDROID-BASED LEARNING MEDIA ON STUDENTS' LEARNING OUTCOMES ON THERMOCYMIA MATERIALS

    Get PDF
    The purpose of this study was to determine: (1) the effectiveness of Android-based learning media on student learning outcomes in thermochemical material; (2) Student responses to the use of Android-based learning media on thermochemical material; (3) The learning outcomes of students who are taught using Android-based chemistry learning media are the same as the KKM value. This research was conducted at Public High School 5 Medan with a total sample of 68 people. The research instrument consisted of standardized tests and questionnaires. The analytical techniques used are: (1) Two-party t test (Independent Samples T test); and (2) One Sample Test. From the results of this study, it was found that: (1) Anroid-based chemistry learning media was effective on student learning outcomes on thermochemical material, with a t-test of 7.063 which was greater than t-table of 2.00. Then based on the Gain Score, the t-test of 6.843 was obtained, which was greater than the t-table of 2.00; (2) Student responses "Very Interesting" with percentages of 92.27%, 93.93% and 92.12%, respectively, on the use of anroid-based learning media in thermochemical material; (3) The learning outcomes of students who are taught using android-based chemistry learning media are not the same as the KKM value, where , tcount (2.126) > ttable (2.032), means that it has a positive effect on KK

    The Correlation of Mathematics Ability and Chemistry Analysis Ability to Improve Student Learning Outcomes in Buffer Solution

    Get PDF
    This study aims to determine the linear and significant relationship between mathematical ability and chemistry learning results; chemical analytical abilities and learning result: association between students' chemistry learning outcomes and mathematical skills and chemical analysis abilities. This type of research is causal research with a quasi-experimental research design. Students in this study were given tests in the form of mathematical ability instruments, chemical analysis abilities, and buffer solution tests. This study found a linear and significant relationship between mathematical ability and students' learning outcomes, a linear and meaningful relationship between chemistry analysis ability and students' learning outcomes, and a significant relationship between mathematical knowledge and chemistry ability. REFERENCESBain, K., Rodriguez, J. M. G., & Towns, M. H. (2019). Chemistry and mathematics: Research and frameworks to explore student reasoning. Journal of Chemical Education, 96(10), 2086-2096.Becker, N., & Towns, M. (2012). Students' understanding of mathematical expressions in physical chemistry contexts: An analysis using Sherin's symbolic forms. Chemistry Education Research and Practice, 13(3), 209-220.Cahyono, T., Masykuri, M., & Ashadi, A. (2016). Kontribusi Kemampuan Numerik Dan Kreativitas Terhadap Prestasi Belajar Siswa Pada Materi Pokok Hidrolisis Kelas XI MIA 1 Dan XI MIA 5 SMA Negeri 2 Karanganyar Tahun Pelajaran 2015/2016. Jurnal Pendidikan Kimia Universitas Sebelas Maret, 5(2), 81–88.Cholifah, E. N. U., Yamtinah, S., & VH, E. S. (2019). Hubungan Kemampuan Analisis dan Matematika dengan Prestasi Belajar Siswa pada Materi Larutan Penyangga Kelas XI SMA Negeri 4 Surakarta. Jurnal Pendidikan Kimia, 8(2), 179. https://doi.org/10.20961/jpkim.v8i2.25340Daniyati, N. A., & Sugiman. (2015). Hubungan Antara Kemampuan Verbal , Kemampuan Interpersonal , dan Minat Belajar dengan Prestasi Belajar Matematika. Pthagoras : Jurnal Pendidikan Indonesia, 10, 50–60.Fitriani, F., Wirawan Fadly, & Ulinnuha Nur Faizah. (2021). Analisis Keterampilan Berpikir Analitis Siswa pada Tema Pewarisan Sifat. Jurnal Tadris IPA Indonesia, 1(1), 55–67. https://doi.org/10.21154/jtii.v1i1.64Habiddin, H., Farizka, L., & bin Shuid, A. N. (2023). Chemistry Students’ Understanding of Lewis Structure, VSEPR Theory, Molecular Geometry, and Symmetry: A Cross-Sectional Study. JTK (Jurnal Tadris Kimiya), 8(1), 1–9.Habiddin, H., & Nagol, I. L. (2023). Chemistry Students’ Mathematics Ability and Their Understanding of Buffer Solution. Jurnal Penelitian Pendidikan IPA, 9(10 SE-Research Articles), 8140–8145. https://doi.org/10.29303/jppipa.v9i10.3682Malahayati, E. N., Corebima, A. D., & Zubaidah, S. (2015). Hubungan Keterampilan Metakognitif dan Kemampuan Berpikir Kritis dengan Hasil Belajar Biologi Siswa SMA dalam Pembelajaran Problem Based Learning (PBL). Jurnal Pendidikan Sains, 3(4), 178–185.Maysaroh, S., Luliani, E., & Wulandari, A. (2021). Hubungan Pemahaman Konsep Matematika terhadap Hasil Belajar Kimia. 214–221.Panggabean, F. T. M., Purba, J., Sutiani, A., & Panggabean, M. A. (2022). Analisis Hubungan Antara Kemampuan Matematika dan Analisis Kimia Terhadap Hasil Belajar Kimia Materi Kesetimbangan Kimia. Jurnal Inovasi Pembelajaran Kimia, 4(1), 18–30.Silitonga, P. M., & Sitepu, R. Y. (2022). Hubungan Kemampuan Matematika dan Kemampuan Fisika Terhadap Hasil Belajar Siswa Pada Materi Termokimia. Jurnal Inovasi Pembelajaran Kimia, 4(1), 10–17.Suliman, Sarwanto, & Suparmi. (2017). Pendekatan Saintifik Pada Pembelajaran Fisika Dengan Metode Eksperimen dan Demonstrasi Ditinjau Dari Kemampuan Berpikir Abstrak dan Kemampuan Analisis Siswa. Jurnal Inkuiri, 6(1), 21–30.Wahyuni, A., & Kurniawan, P. (2018). Hubungan Kemampuan Berpikir Kreatif Terhadap Hasil Belajar Mahasiswa. Jurnal Matematika, 17(2), 1–8. https://doi.org/10.29313/jmtm.v17i2.4114Wijanarko, Y. (2017). Model Pembelajaran Make A Match. Jurnal Taman Cendekia, 1(1), 52–59.Yuliastusi. (2020). Peningkatan Ketuntasan Hasil Belajar Kimia pada Materi Hidrokarbon Melalui Pembelajaran Deduktif Siswa Kelas XI IPA Di SMA Negeri 4 Kota Denpasar. BRILIANT: Jurnal Riset Dan Konseptual, 5(1), 172–179

    Inquiry Based Learning STEM Teaching Materials to Improve Students’ Thinking Skills in Stoichiometry

    Get PDF
    In stoichiometry learning process, mostly educators focus on calculations. Students are not invited to think more critically about stoichiometry application in life. This constraint makes teachers have to develop new learning models, including Inquiry Based Learning (IBL) model, and Science, Technology, Engineering, Mathematics (STEM) based on chemical literacy. This study aims to develop general chemistry teaching materials on stoichiometry using IBL and STEM models based on chemical literacy that are feasible (valid) and capable of improving students' LOTS and HOTS abilities. The development model used is the ADDIE model, with research subjects of 34 students. The result shows that stoichiometry teaching materials using the IBL STEM model based on chemical literacy are valid (feasible) to be applied in learning with an average score of 4.42 for the material aspect and 4.55 for the design aspect. The developed teaching materials have been proven to significantly improve students’ LOTS and HOTS abilities

    EFEKTIVITAS MODEL PROBLEM BASED LEARNING BERMEDIAKAN LEMBAR KERJA PESERTA DIDIK TERHADAP HASIL BELAJAR KIMIADAN KEMAMPUAN BERPIKIR KRITIS PESERTA DIDIK SMA

    Get PDF
    The aim of this research is to know the effectivenessproblem based learning model (PBL) using student worksheet on learning outcomes and students’critical thinking skills on the teaching Reaction Rate. The population in this research was grade 11th of SMA Negeri 6 Medan. Classes sample was taken by random sampling, and two classes were selected as a sample. Those two classes will be taught with Problem Based Learning model, the difference is the first class will be used students worksheets and the other class is not. The instrumentto conduct this researchwas  by test and non-test. Based on parametric statistical test, the result of pretest, postest, and students’ critical thinking skills data from those two classes have a normal distribution and homogeny. Hypothesis was tested by using one tailed test with significant level ( ) =0,05. The data from hypothesis testing learning outcomes is tcal  ttable (3,101 1,669), means Hois rejected and Ha is accepted. Hypothesis testing result on students’ learning outcomes using student worksheets is higher than the non-using student worksheet. Critical thinking hypothesis test is tcal  ttable (4,754 1,669), means Hois rejected and Ha is accepted. Hypothesis testing result oncritical thinking using student worksheet is higher than the non-using student worksheet. Contribution of students’ critical thinking to the ups and downs of learning outcomes on the experiment class is 81,5%.

    The Correlation of Mathematics Ability and Chemistry Analysis Ability to Improve Student Learning Outcomes in Buffer Solution

    Get PDF
    This study aims to determine the linear and significant relationship between mathematical ability and chemistry learning results; chemical analytical abilities and learning result: association between students' chemistry learning outcomes and mathematical skills and chemical analysis abilities. This type of research is causal research with a quasi-experimental research design. Students in this study were given tests in the form of mathematical ability instruments, chemical analysis abilities, and buffer solution tests. This study found a linear and significant relationship between mathematical ability and students' learning outcomes, a linear and meaningful relationship between chemistry analysis ability and students' learning outcomes, and a significant relationship between mathematical knowledge and chemistry ability.   REFERENCES Bain, K., Rodriguez, J. M. G., & Towns, M. H. (2019). Chemistry and mathematics: Research and frameworks to explore student reasoning. Journal of Chemical Education, 96(10), 2086-2096. Becker, N., & Towns, M. (2012). Students' understanding of mathematical expressions in physical chemistry contexts: An analysis using Sherin's symbolic forms. Chemistry Education Research and Practice, 13(3), 209-220. Cahyono, T., Masykuri, M., & Ashadi, A. (2016). Kontribusi Kemampuan Numerik Dan Kreativitas Terhadap Prestasi Belajar Siswa Pada Materi Pokok Hidrolisis Kelas XI MIA 1 Dan XI MIA 5 SMA Negeri 2 Karanganyar Tahun Pelajaran 2015/2016. Jurnal Pendidikan Kimia Universitas Sebelas Maret, 5(2), 81–88. Cholifah, E. N. U., Yamtinah, S., & VH, E. S. (2019). Hubungan Kemampuan Analisis dan Matematika dengan Prestasi Belajar Siswa pada Materi Larutan Penyangga Kelas XI SMA Negeri 4 Surakarta. Jurnal Pendidikan Kimia, 8(2), 179. https://doi.org/10.20961/jpkim.v8i2.25340 Daniyati, N. A., & Sugiman. (2015). Hubungan Antara Kemampuan Verbal , Kemampuan Interpersonal , dan Minat Belajar dengan Prestasi Belajar Matematika. Pthagoras : Jurnal Pendidikan Indonesia, 10, 50–60. Fitriani, F., Wirawan Fadly, & Ulinnuha Nur Faizah. (2021). Analisis Keterampilan Berpikir Analitis Siswa pada Tema Pewarisan Sifat. Jurnal Tadris IPA Indonesia, 1(1), 55–67. https://doi.org/10.21154/jtii.v1i1.64 Habiddin, H., Farizka, L., & bin Shuid, A. N. (2023). Chemistry Students’ Understanding of Lewis Structure, VSEPR Theory, Molecular Geometry, and Symmetry: A Cross-Sectional Study. JTK (Jurnal Tadris Kimiya), 8(1), 1–9. Habiddin, H., & Nagol, I. L. (2023). Chemistry Students’ Mathematics Ability and Their Understanding of Buffer Solution. Jurnal Penelitian Pendidikan IPA, 9(10 SE-Research Articles), 8140–8145. https://doi.org/10.29303/jppipa.v9i10.3682 Malahayati, E. N., Corebima, A. D., & Zubaidah, S. (2015). Hubungan Keterampilan Metakognitif dan Kemampuan Berpikir Kritis dengan Hasil Belajar Biologi Siswa SMA dalam Pembelajaran Problem Based Learning (PBL). Jurnal Pendidikan Sains, 3(4), 178–185. Maysaroh, S., Luliani, E., & Wulandari, A. (2021). Hubungan Pemahaman Konsep Matematika terhadap Hasil Belajar Kimia. 214–221. Panggabean, F. T. M., Purba, J., Sutiani, A., & Panggabean, M. A. (2022). Analisis Hubungan Antara Kemampuan Matematika dan Analisis Kimia Terhadap Hasil Belajar Kimia Materi Kesetimbangan Kimia. Jurnal Inovasi Pembelajaran Kimia, 4(1), 18–30. Silitonga, P. M., & Sitepu, R. Y. (2022). Hubungan Kemampuan Matematika dan Kemampuan Fisika Terhadap Hasil Belajar Siswa Pada Materi Termokimia. Jurnal Inovasi Pembelajaran Kimia, 4(1), 10–17. Suliman, Sarwanto, & Suparmi. (2017). Pendekatan Saintifik Pada Pembelajaran Fisika Dengan Metode Eksperimen dan Demonstrasi Ditinjau Dari Kemampuan Berpikir Abstrak dan Kemampuan Analisis Siswa. Jurnal Inkuiri, 6(1), 21–30. Wahyuni, A., & Kurniawan, P. (2018). Hubungan Kemampuan Berpikir Kreatif Terhadap Hasil Belajar Mahasiswa. Jurnal Matematika, 17(2), 1–8. https://doi.org/10.29313/jmtm.v17i2.4114 Wijanarko, Y. (2017). Model Pembelajaran Make A Match. Jurnal Taman Cendekia, 1(1), 52–59. Yuliastusi. (2020). Peningkatan Ketuntasan Hasil Belajar Kimia pada Materi Hidrokarbon Melalui Pembelajaran Deduktif Siswa Kelas XI IPA Di SMA Negeri 4 Kota Denpasar. BRILIANT: Jurnal Riset Dan Konseptual, 5(1), 172–179

    Analysis of 7th-grade Students' Misconceptions of Acid-Base

    Get PDF
    In the classroom, students have several barriers that affect learning outcomes and learning experiences. Generally, the obstacles that occur are the misconceptions experienced by students. Teachers' error causes many students to have misconceptions about the concept and lack practice questions related to the idea. This research was conducted to see and describe the students' misconceptions about understanding acids, bases and salts. This descriptive research uses test questions about acids, bases and salts and uses the CRI method to analyze data. The results show that students who lack understanding are 13.83%, good understanding 18.68%, and students with misconceptions 67.49%. REFERENCESAmala, F., & Habiddin, H. (2022). Pemahaman Konsep dalam Topik Sifat Asam Basa Larutan Garam: Studi Pada Siswa SMA di Blitar. Jurnal Zarah, 10(2), 91–100. https://doi.org/10.31629/ZARAH.V10I2.4321Ardina, D., & Habiddin, H. (2023). Acid-base properties of salt solution: Study at a secondary school in Banyuwangi. AIP Conference Proceedings, 2569(1), 30018. https://doi.org/10.1063/5.0112074Dewi, E. P., & Wulandari, F. (2021). Identification of Misconceptions in Science Learning During the Covid-19 Pandemic Using the CRI (Certainty of Response Index) Method for Primary school Students. Jurnal Penelitian Pendidikan IPA, 7(SpecialIssue), 145–150.Febriani, G., Marfu’ah, S., & Joharmawan, R. (2018). Identifikasi Konsep Sukar, Kesalahan Konsep, Dan Faktor-Faktor Penyebab Kesulitan Belajar Hidrolisis Garam Siswa Salah Satu SMA Blitar. J-PEK (Jurnal Pembelajaran Kimia), 3(2), 35–43. https://doi.org/10.17977/um026v3i22018p035Habiddin, H., Akbar, D. F. K., Husniah, I., & Luna, P. (2022). Descubriendo la comprensión de los estudiantes: Evidencia para la enseñanza de las propiedades ácido-base de la solución salina. Educación Química, 33(1), 64–76. https://doi.org/10.22201/FQ.18708404E.2022.1.79488Habiddin, H., Atikah, A., Husniah, I., Haetami, A., & Maysara, M. (2021). Building scientific explanation: A study of acid-base properties of salt solution. AIP Conference Proceedings, 2330(1), 20047. https://doi.org/10.1063/5.0043215Hoe, K. Y., & Subramaniam, R. (2016). On the prevalence of alternative conceptions on acid–base chemistry among secondary students: insights from cognitive and confidence measures. Chemistry Education Research and Practice, 17(2), 263-282.Lathifa, U. (2018). Correcting Students’ Misconception In Acid And Base Concept Using Pdeode Instruction Strategy. Unnes Science Education Journal, 7(2), 170-177.Maryanti, R., & Nandiyanto, A. B. D. (2021). Curriculum Development in Science Education in Vocational School. ASEAN Journal of Science and Engineering Education, 1(3), 151-156.Putri, A. K., Afandy, D., & Su’aidy, M. (2016). Pengaruh Penerapan Strategi Pembelajaran Praktikum Menggunakan Diagram Ve Terhadap Hasil Belajar Siswa Pada Materi Hidrolisis Garam. J-PEK (Jurnal Pembelajaran Kimia), 1(2), 15–18. http://journal2.um.ac.id/index.php/j-pek/article/view/764Sesen, B. A., & Tarhan, L. (2011). Active-learning versus teacher-centered instruction for learning acids and bases. Research in Science & Technological Education, 29(2), 205-226.Suprapto, N. (2020). A Systematic Review of Self-Efficacy among University Students as Pre-service Teachers in Science Education. Journal for the Education of Gifted Young Scientists, 8(4), 1387-1396.Widarti, H. R., Permanasari, A., & Mulyani, S. (2017). Undergraduate Students’ Misconception On Acid-Base and Argentometric Titrations: A Challenge to Implement Multiple Representation Learning Model With Cognitive Dissonance Strategy. International Journal of Education, 9(2), 105-122.Yuliati, Y. (2017). Miskonsepsi Siswa Pada Pembelajaran IPA Serta Remediasinya. Jurnal Bio Education, 2(2), 50-58

    IMPLEMENTASI PROBLEM BASED-LEARNING (PBL) DAN PENDEKATAN ILMIAH MENGGUNAKAN MEDIA KARTU UNTUK MENINGKATKAN HASIL BELAJAR PESERTA DIDIK TENTANG MENGAJAR IKATAN KIMIA

    Get PDF
    This study aims to determine whether there is an influence on the implementation of PBL through a scientific approach that provides a media card for high school students' chemistry learning outcomes. To achieve this goal, quasi-experimental research was conducted using two classes, namely the experimental class and the control class. Data obtained using a validated test instrument in the form of pretest and posttest. The results showed that (1). There was an increase in chemistry learning outcomes from the average pretest 27.2 to 63.95 and 72.5 in the two classes of experiment I and experiment II, respectively. (2). Student learning outcomes that are taught with the Problem Based Learning model and the scientific approach provides higher paired cards than using textbook as a media

    Analysis of 7th-grade Students' Misconceptions of Acid-Base

    Get PDF
    In the classroom, students have several barriers that affect learning outcomes and learning experiences. Generally, the obstacles that occur are the misconceptions experienced by students. Teachers' error causes many students to have misconceptions about the concept and lack practice questions related to the idea. This research was conducted to see and describe the students' misconceptions about understanding acids, bases and salts. This descriptive research uses test questions about acids, bases and salts and uses the CRI method to analyze data. The results show that students who lack understanding are 13.83%, good understanding 18.68%, and students with misconceptions 67.49%.   REFERENCES Amala, F., & Habiddin, H. (2022). Pemahaman Konsep dalam Topik Sifat Asam Basa Larutan Garam: Studi Pada Siswa SMA di Blitar. Jurnal Zarah, 10(2), 91–100. https://doi.org/10.31629/ZARAH.V10I2.4321 Ardina, D., & Habiddin, H. (2023). Acid-base properties of salt solution: Study at a secondary school in Banyuwangi. AIP Conference Proceedings, 2569(1), 30018. https://doi.org/10.1063/5.0112074 Dewi, E. P., & Wulandari, F. (2021). Identification of Misconceptions in Science Learning During the Covid-19 Pandemic Using the CRI (Certainty of Response Index) Method for Primary school Students. Jurnal Penelitian Pendidikan IPA, 7(SpecialIssue), 145–150. Febriani, G., Marfu’ah, S., & Joharmawan, R. (2018). Identifikasi Konsep Sukar, Kesalahan Konsep, Dan Faktor-Faktor Penyebab Kesulitan Belajar Hidrolisis Garam Siswa Salah Satu SMA Blitar. J-PEK (Jurnal Pembelajaran Kimia), 3(2), 35–43. https://doi.org/10.17977/um026v3i22018p035 Habiddin, H., Akbar, D. F. K., Husniah, I., & Luna, P. (2022). Descubriendo la comprensión de los estudiantes: Evidencia para la enseñanza de las propiedades ácido-base de la solución salina. Educación Química, 33(1), 64–76. https://doi.org/10.22201/FQ.18708404E.2022.1.79488 Habiddin, H., Atikah, A., Husniah, I., Haetami, A., & Maysara, M. (2021). Building scientific explanation: A study of acid-base properties of salt solution. AIP Conference Proceedings, 2330(1), 20047. https://doi.org/10.1063/5.0043215 Hoe, K. Y., & Subramaniam, R. (2016). On the prevalence of alternative conceptions on acid–base chemistry among secondary students: insights from cognitive and confidence measures. Chemistry Education Research and Practice, 17(2), 263-282. Lathifa, U. (2018). Correcting Students’ Misconception In Acid And Base Concept Using Pdeode Instruction Strategy. Unnes Science Education Journal, 7(2), 170-177. Maryanti, R., & Nandiyanto, A. B. D. (2021). Curriculum Development in Science Education in Vocational School. ASEAN Journal of Science and Engineering Education, 1(3), 151-156. Putri, A. K., Afandy, D., & Su’aidy, M. (2016). Pengaruh Penerapan Strategi Pembelajaran Praktikum Menggunakan Diagram Ve Terhadap Hasil Belajar Siswa Pada Materi Hidrolisis Garam. J-PEK (Jurnal Pembelajaran Kimia), 1(2), 15–18. http://journal2.um.ac.id/index.php/j-pek/article/view/764 Sesen, B. A., & Tarhan, L. (2011). Active-learning versus teacher-centered instruction for learning acids and bases. Research in Science & Technological Education, 29(2), 205-226. Suprapto, N. (2020). A Systematic Review of Self-Efficacy among University Students as Pre-service Teachers in Science Education. Journal for the Education of Gifted Young Scientists, 8(4), 1387-1396. Widarti, H. R., Permanasari, A., & Mulyani, S. (2017). Undergraduate Students’ Misconception On Acid-Base and Argentometric Titrations: A Challenge to Implement Multiple Representation Learning Model With Cognitive Dissonance Strategy. International Journal of Education, 9(2), 105-122. Yuliati, Y. (2017). Miskonsepsi Siswa Pada Pembelajaran IPA Serta Remediasinya. Jurnal Bio Education, 2(2), 50-58

    DEVELOPMENT OF PROBLEM BASED LEARNING (PBL) CHEMISTRY LEARNING MODULE ON SOLUBILITY AND SOLUBILITY PRODUCTS IN CLASS XI SMA NEGERI 15 MEDAN

    No full text
    This study aims to determine the development of a chemistry learning module based on Problem Based Learning (PBL) on Solubility and Solubility Products in Class XI SMA Negeri 15 Medan. The sample in this study consisted of one class consisting of 30 students who were taught using the Problem Based Learning model. The instrument used is a test in the form of essay questions. The results showed that 1) the learning module based on Problem Based Learning on the material solubility and solubility product of chemistry learning which was developed based on expert judgment had met the BSNP eligibility standard, the average validation results obtained an average content feasibility score (3.84), the feasibility language (3.75), feasibility of presentation (3.75) and feasibility of graphics (3.76); 2) based on the assessment of teacher and student responses that have met the BSNP eligibility standards obtained based on material (3.84), appearance (3.87) and benefits (3.69); 3) student learning outcomes after being taught using Problem Based Learning chemistry learning modules are higher than the KKM (75) with an average of 81.07
    corecore