18 research outputs found

    Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice

    Get PDF
    Introduction: Silk fibroin (SF) scaffolds have been shown to be a suitable substrate for tissue engineering and to improve tissue regeneration when cellularized with mesenchymal stromal cells (MSCs). We here demonstrate, for the first time, that electrospun nanofibrous SF patches, cellularized with human adipose-derived MSCs (Ad-MSCs-SF) or decellularized (D-Ad- MSCs-SF) are effective in the treatment of skin wounds, improving skin regeneration in db/db diabetic mice. Methods: The conformational and structural analyses of SF and D-Ad-MSCs-SF patches were performed by scanning electron microscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Wounds were performed by a 5mm punch biopsy tool on the mouse\u2019s back. Ad-MSCs-SF and D-Ad-MSCs-SF patches were transplanted and the efficacy of treatments was assessed by measuring the wound closure area, by histological examination and by gene expression profile. We further investigated the in vitro angiogenic properties of Ad-MSCs-SF and D-Ad-MSCs-SF patches by affecting migration of human umbilical vein endothelial cells (HUVECs), keratinocytes (KCs) and dermal fibroblasts (DFs), through the aortic ring assay and, finally, by evaluating the release of angiogenic factors. Results: We found that Ad-MSCs adhere and grow on SF, maintaining their phenotypic mesenchymal profile and differentiation capacity. Conformational and structural analyses on SF and D-Ad- MSCs-SF samples, showed that sterilization, decellularization, freezing and storing did not affect the SF structure. When grafted in wounds of diabetic mice, both Ad-MSCs-SF and DAd- MSCs-SF significantly improved tissue regeneration, reducing the wound area respectively by 40% and 35%, within three days, completing the process in around 10 days compared to 15-17 days of controls. RT2 gene profile analysis of the wounds treated with Ad- MSCs-SF and D-Ad-MSCs-SF showed an increment of genes involved in angiogenesis and matrix remodelling. Finally, Ad-MSCs-SF and D-Ad-MSCs-SF co-cultured with HUVECs, DFs and KCs, preferentially enhanced the HUVECs\u2019 migration and the release of angiogenic factors stimulating microvessel outgrowth in the aortic ring assay. Conclusions: Our results highlight for the first time that D-Ad-MSCs-SF patches are almost as effective as Ad-MSCs-SF patches in the treatment of diabetic wounds, acting through a complex mechanism that involves stimulation of angiogenesis. Our data suggest a potential use of DAd- MSCs-SF patches in chronic diabetic ulcers in humans

    One-pot Butyl Levulinate Production from Fructose and 1-Butanol

    No full text
    Nowadays fossil fuels such as coal, petroleum, and natural gas provide more than three quarters of the world`s energy. They are also used to produce the most common transportation fuels. In addition over 96% of chemicals containing carbon, used in our society, derive from petroleum. Among all the possibilities, biomass, such as wood waste, aquatic plant, agricultural crops, municipal and animal wastes, has been recognized as the most promising candidate to replace the fossil resources. Biomass, especially lignocellulose type, represents a renewable, plentiful and cheap material for the industrial production, not only in the energy field but also as feedstock for the manufacture of chemicals, solvent and materials, expecting also environmental benefits. In this context, alkyls levulinates are a class of compounds that are widely studied, primarily as additives for diesel but also for their use as aromas, fragrances and green solvents. This work proposes the study of the reaction between fructose and 1-butanol to produce butyl levulinate using as catalyst ionic acid-exchange resins. In particular the determination of the behavior of the catalyst, according to the reaction conditions used such as feed composition and temperature, and therefore the achievement of a greater selectivity to butyl levulinate and lower production of by-products such as formic acid, butyl formate and humins. Results shows that decreasing the amount of water the selectivity to the main product, butyl levulinate, increases and the formation of by-products such as humins, formic acid and butyl formate decreases. In addition, rising the temperature, the reaction rate increases, leading to higher selectivity to butyl levulinate and the reduction of by-products. The best conditions to obtain the selectivity to butyl levulinate up to 59%, is working at 130°C, with no water, Ratio Fru/BuOH (mol/mol) equal to 0,0165 and Rcat(wt/wt) equal to 0.016

    Surface and interface effects on the current–voltage characteristic curves of multiwall carbon nanotube-Si hybrid junctions selectively probed through exposure to HF vapors and ppm-NO2

    No full text
    The possibility to increase the efficiency of photovoltaic (PV) cells based on hybrid carbon nanotube (CNT)–Si heterojunctions is related to the ability to control the chemical properties of the CNT–Si interface and of the CNT bundle layer. In spite of the encouraging performances of PV cells based on multiwall (MW) CNT, so far few efforts have been made in the study of this device compared to single wall (SW) CNT–Si interfaces. Here, surface and interface effects on the current–voltage characteristic curves of MW CNT–Si hybrid junctions are investigated through exposure to HF vapors and to 10 ppm-NO2 and compared to the effects detected in SW CNT–Si junctions. Quite similar results in terms of open circuit voltage, short circuit current density, and efficiency are found for both cells, suggesting that exposure to HF vapors mostly affects the interface chemical properties, i.e., the silicon oxidation state, that in both junctions reach an optimal state about 50 h after etching. In turn, NO2 exposure has larger effects on the SW-based cell, consistently with the larger surface-to-volume ratio of SW with respect to MW. In both cases, the efficiency value reaches a maximum after 28 min, before dropping when the NO2 molecules desorb from the surface. A combined analysis of current–voltage curves and photoemission data collected along the different phases of gas exposures allowed us to relate changes in the electrical properties to the chemistry of Si at the interface

    Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications

    No full text
    Microbial transglutaminase (mTG) and mushroom tyrosinase (MT) are used to crosslink B. mori silk fibroin/gelatin (SF/G) films. Crosslinked and uncrosslinked SF/G films show no phase separation. The thermal behavior and the conformational structure of SF/G films are strongly affected by blending and enzymatic treatment. Formation of high thermally stable crosslinked macromolecular species is observed, suggesting the occurrence of strong intermolecular interactions between the two polymers as confirmed by FT-Raman spectroscopy. Preliminary in vitro tests show that MT-crosslinked blends with G amounts ≄40% and mTG-crosslinked SF/G 60/40 films support C2C12 cardiomyocyte adhesion and proliferation. In this study, microbial transglutaminase (mTG) and mushroom tyrosinase (MT) are used as crosslinking agents for pure and blend B. mori silk fibroin (SF)/gelatin (G) films. In the light of their morphological, mechanical, physical, structural, and biological properties, SF/G blends appear promising candidate substrates in the field of soft tissue engineering

    Remitting infratentorial leukoencephalopathy in a patient with HIV infection.

    No full text
    [no abstract available

    A Molecular Thermometer for Nanoparticles for Optical Hyperthermia

    No full text
    We developed an all-optical method to measure the temperature on gold (nanorods and nanostars) and magnetite nanoparticles under near-infrared and radiofrequency excitation by monitoring the excited state lifetime of Rhodamine B that lies within congruent to 2.20 nm from the nanoparticle surface. We reached high temperature sensitivity (0.029 +/- 0.001 ns/degrees C) and low uncertainty (+/- 0.3 degrees C). Gold nanostars are congruent to 3 and congruent to 100 times more efficient than gold nanorods and magnetite nanoparticles in inducing localized hyperthermi

    Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease

    No full text
    Funding Information: Breath samples were collected (aer signed consent) from 11 volunteers aged 22–88 years. Among them, 7 volunteers suffer from COPD, while 4 were healthy control volunteers. All volunteers were recruited within a research project funded by the UniversitĂ Cattolica del Sacro Cuore in the frame of the 2016–2018 D 3.2 Strategic Program “Anapnoi”. For each volunteer, several samples were collected on different days. An overall number of 52 samples were analysed. Subject characteristics including age, gender, COPD category as well as the number of tests carried out for each subject are shown in Table S1 (in the ESI†). Breath sampling was carried out in a disposable bag (volume = 0.6 liters), containing the sensor array, and inated by breath through a disposable plastic straw. This procedure took around 10–15 seconds until the bag was fully inated. We did not record signicant differences among volunteers during the bag ination phase, likely due to the reduced volume to ll and to the lack ofany lter along the collection pipeline, which could hinder the bag ination step. The overall sensor exposure time inside the bag was set to 3 minutes, to let all sensors fully interact with the breath sample. Funding Information: G. D., S. P., M. C., S. F., P. M., and L. S. acknowledge funding by the UniversitĂ Cattolica del Sacro Cuore in the frame of the 2016–2018 D 3.2 Strategic Program “Anapnoi”. L. S. and S. P. acknowledge funding by the Italian Ministry of Education, Universities, and Research (MIUR) through the PRIN 2017-N. 2017NYPHN8 (MADAM) program. F. S. F. and A. G. N. acknowledge Russian Foundation of Basic Research project no. 20-03-00804. I. I. B. acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 739570 (ANTARES). Publisher Copyright: © The Royal Society of Chemistry.An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH3), nitrogen dioxide (NO2), hydrogen sulphide (H2S), and benzene (C6H6). Among them, ammonia (NH3) and nitrogen dioxide (NO2) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH3) and nitrogen dioxide (NO2), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the arrayselectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset.Peer reviewe

    CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells

    Get PDF
    Summary: Cancer-initiating cells (CICs) have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC), CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs) remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5â€Č-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. : Cavallaro et al. characterized the transcriptome of OCIC-enriched primary cultures and found CD73 as an upregulated gene. CD73 was then shown to regulate the expression of stemness and EMT-associated genes. The expression and function of CD73 in OCICs is required for tumor initiation, and CD73-targeted drugs decrease the rate of tumor take and inhibit cancer growth. Keywords: CD73, ovarian cancer, cancer-initiating cells, cancer stem cells, EMT, adenosin
    corecore