12 research outputs found

    Current knowledge, status and future for plant and fungal diversity in Great Britain and the UK Overseas Territories

    Get PDF
    Societal Impact Statement We rely on plants and fungi for most aspects of our lives. Yet plants and fungi are under threat, and we risk losing species before we know their identity, roles, and potential uses. Knowing names, distributions, and threats are first steps toward effective conservation action. Accessible products like field guides and online resources engage society, harnessing collective support for conservation. Here, we review current knowledge of the plants and fungi of the UK and UK Overseas Territories, highlighting gaps to help direct future research efforts toward conserving these vital elements of biodiversity. Summary This review summarizes current knowledge of the status and threats to the plants and fungi of Great Britain and the UK Overseas Territories (UKOTs). Although the body of knowledge is considerable, the distribution of information varies substantially, and we highlight knowledge gaps. The UK vascular flora is the most well studied and we have a relatively clear picture of its 9,001 native and alien taxa. We have seedbanked 72% of the native and archaeophyte angiosperm taxa and 78% of threatened taxa. Knowledge of the UKOTs flora varies across territories and we report a UKOTs flora comprising 4,093 native and alien taxa. We have conserved 27% of the native flora and 51% of the threatened vascular plants in Kew's Millennium Seed Bank, UK. We need a better understanding of the conservation status of plants in the wild, and progress toward completion or updating national red lists varies. Site‐based protection of key plant assemblages is outlined, and progress in identifying Important Plant Areas analyzed. Knowledge of the non‐vascular flora, especially seaweeds remains patchy, particularly in many UKOTs. The biggest gaps overall are in fungi, particularly non‐lichenized fungi. Considerable investment is needed to fill these knowledge gaps and instigate effective conservation strategies

    From European Priority Species to Invasive Weed: Marsilea azorica

    No full text

    Putting biogeography's cart back behind taxonomy's horse: a response to Triantis et al.

    No full text
    Copyright © 2012 Blackwell Publishing.In a recent paper, two of us discussed diversity patterns and diversification processes in the Azores flora. Triantis et al. (2012, Journal of Biogeography, 39, 1179-1184) challenged our hypothesis that palaeoclimatic differences had an effect on diversification rates and suggested that area, island age and isolation explain diversity patterns. They did not, however, fully address the results from our subsequent paper, in which we showed that diversity patterns evident from phylogeographic studies differ markedly from those suggested by checklists. Checklists are working hypotheses and we suggest that the discrepancies evident between molecular data and checklists may be indicative of deficiencies in our taxonomic understanding of the Azores flora. Patterns of molecular and morphological diversity need to be better understood, and the discrepancies between checklists and molecular data accounted for, before we can establish the relative importance of factors such as palaeoclimate, area, island age or isolation in generating endemic diversity patterns in the Azores flora

    Macaronesia Acts as a Museum of Genetic Diversity of Relict Ferns: The Case of Diplazium caudatum (Athyriaceae)

    No full text
    Macaronesia has been considered a refuge region of the formerly widespread subtropical lauroid flora that lived in Southern Europe during the Tertiary. The study of relict angiosperms has shown that Macaronesian relict taxa preserve genetic variation and revealed general patterns of colonization and dispersal. However, information on the conservation of genetic diversity and range dynamics rapidly diminishes when referring to pteridophytes, despite their dominance of the herbaceous stratum in the European tropical palaeoflora. Here we aim to elucidate the pattern of genetic diversity and phylogeography of Diplazium caudatum, a hypothesized species of the Tertiary Palaeotropical flora and currently with its populations restricted across Macaronesia and disjunctly in the Sierras de Algeciras (Andalusia, southern Iberian Peninsula). We analysed 12 populations across the species range using eight microsatellite loci, sequences of a region of plastid DNA, and carry out species-distribution modelling analyses. Our dating results confirm the Tertiary origin of this species. The Macaronesian archipelagos served as a refuge during at least the Quaternary glacial cycles, where populations of D. caudatum preserved higher levels of genetic variation than mainland populations. Our data suggest the disappearance of the species in the continent and the subsequent recolonization from Macaronesia. The results of the AMOVA analysis and the indices of clonal diversity and linkage disequilibrium suggest that D. caudatum is a species in which inter-gametophytic outcrossing predominates, and that in the Andalusian populations there was a shift in mating system toward increased inbreeding and/or clonality. The model that best explains the genetic diversity distribution pattern observed in Macaronesia is, the initial and recurrent colonization between islands and archipelagos and the relatively recent diversification of restricted area lineages, probably due to the decrease of favorable habitats and competition with lineages previously established. This study extends to ferns the concept of Macaronesia archipelagos as refugia for genetic variation

    Macaronesia Acts as a Museum of Genetic Diversity of Relict Ferns: The Case of <i>Diplazium caudatum</i> (Athyriaceae)

    No full text
    Macaronesia has been considered a refuge region of the formerly widespread subtropical lauroid flora that lived in Southern Europe during the Tertiary. The study of relict angiosperms has shown that Macaronesian relict taxa preserve genetic variation and revealed general patterns of colonization and dispersal. However, information on the conservation of genetic diversity and range dynamics rapidly diminishes when referring to pteridophytes, despite their dominance of the herbaceous stratum in the European tropical palaeoflora. Here we aim to elucidate the pattern of genetic diversity and phylogeography of Diplazium caudatum, a hypothesized species of the Tertiary Palaeotropical flora and currently with its populations restricted across Macaronesia and disjunctly in the Sierras de Algeciras (Andalusia, southern Iberian Peninsula). We analysed 12 populations across the species range using eight microsatellite loci, sequences of a region of plastid DNA, and carry out species-distribution modelling analyses. Our dating results confirm the Tertiary origin of this species. The Macaronesian archipelagos served as a refuge during at least the Quaternary glacial cycles, where populations of D. caudatum preserved higher levels of genetic variation than mainland populations. Our data suggest the disappearance of the species in the continent and the subsequent recolonization from Macaronesia. The results of the AMOVA analysis and the indices of clonal diversity and linkage disequilibrium suggest that D. caudatum is a species in which inter-gametophytic outcrossing predominates, and that in the Andalusian populations there was a shift in mating system toward increased inbreeding and/or clonality. The model that best explains the genetic diversity distribution pattern observed in Macaronesia is, the initial and recurrent colonization between islands and archipelagos and the relatively recent diversification of restricted area lineages, probably due to the decrease of favorable habitats and competition with lineages previously established. This study extends to ferns the concept of Macaronesia archipelagos as refugia for genetic variation

    Patterns et moteurs de la diversité bêta à travers les échelles géographiques et les lignées de la flore macaronésienne

    Full text link
    peer reviewedAim: How spatial, historical and ecological processes drive diversity patterns remains one of the main foci of island biogeography. We determined how beta diversity varies across spatial scales and among organisms, disentangled the drivers of this variation, and examined how, consequently, biogeographic affinities within and among archipelagos vary among land plants. Location: Macaronesia. Taxon: Bryophytes, pteridophytes, spermatophytes. Methods: Species turnover and nestedness were compared within and among archipelagos across taxonomic groups. The relationship between species turnover and nestedness, climatic, geological and geographic factors was analysed using generalized dissimilarity models. Results: Species turnover, but not nestedness, increased with the geographic scale. This increment decreased from spermatophytes, pteridophytes and bryophytes, wherein the median turnover was less than half that in spermatophytes. Bryophytes exhibited a significantly higher nestedness and lower turnover than spermatophytes. Extant climatic conditions and island age contributed the most to all models but the importance of island age for bryophyte and pteridophyte turnover was marginal. Spermatophyte floras clustered by archipelago, whereas the clustering patterns in pteridophyte and bryophyte floras reflected macroclimatic conditions. Main Conclusions: The lower increment of species turnover with spatial scale and the higher nestedness in bryophytes and pteridophytes than in spermatophytes reflect the variation in dispersal capacities and distribution ranges among land plants. Accordingly, extant climatic conditions contributed more to explain turnover in bryophytes and pteridophytes than in spermatophytes, whereas factors associated with dispersal limitations, including island age, geographic distance and archipelago structure, exhibited the reverse trend. The differences in beta diversity patterns, caused by different responses of Macaronesian land plant lineages to the main factors shaping their community composition, explain their different biogeographic affinities. These differences reflect a distinct origin and different mechanisms of speciation among Macaronesian land plant lineages and archipelagos

    Patterns and drivers of beta diversity across geographic scales and lineages in the Macaronesian flora

    Get PDF
    Aim: How spatial, historical and ecological processes drive diversity patterns remains one of the main foci of island biogeography. We determined how beta diversity varies across spatial scales and among organisms, disentangled the drivers of this variation, and examined how, consequently, biogeographic affinities within and among archipelagos vary among land plants. Location: Macaronesia. Taxon: Bryophytes, pteridophytes, spermatophytes. Methods: Species turnover and nestedness were compared within and among ar-chipelagos across taxonomic groups. The relationship between species turnover and nestedness, climatic, geological and geographic factors was analysed using general-ized dissimilarity models. Results: Species turnover, but not nestedness, increased with the geographic scale. This increment decreased from spermatophytes, pteridophytes and bryophytes, wherein the median turnover was less than half that in spermatophytes. Bryophytes exhibited a significantly higher nestedness and lower turnover than spermatophytes. Extant climatic conditions and island age contributed the most to all models but the importance of island age for bryophyte and pteridophyte turnover was marginal. Spermatophyte floras clustered by archipelago, whereas the clustering patterns in pteridophyte and bryophyte floras reflected macroclimatic conditions. Main Conclusions: The lower increment of species turnover with spatial scale and the higher nestedness in bryophytes and pteridophytes than in spermatophytes reflect the variation in dispersal capacities and distribution ranges among land plants. Accordingly, extant cli-matic conditions contributed more to explain turnover in bryophytes and pteridophytes than in spermatophytes, whereas factors associated with dispersal limitations, including island age, geographic distance and archipelago structure, exhibited the reverse trend. The differences in beta diversity patterns, caused by different responses of Macaronesian land plant lineages to the main factors shaping their community composition, explain their different biogeographic affinities. These differences reflect a distinct origin and different mechanisms of speciation among Macaronesian land plant lineages and archipelago
    corecore