1,218 research outputs found
A Compact Multi-Planet System With A Significantly Misaligned Ultra Short Period Planet
We report the discovery of a compact multi-planet system orbiting the
relatively nearby (78pc) and bright () K-star, K2-266 (EPIC248435473).
We identify up to six possible planets orbiting K2-266 with estimated periods
of P = 0.66, P = 6.1, P = 7.8, P = 14.7, P = 19.5, and
P = 56.7 days and radii of R = 3.3 R, 0.646
R, 0.705 R, 2.93 R, 2.73 R, and
0.90 R, respectively. We are able to confirm the planetary nature of
two of these planets (d & e) from analyzing their transit timing variations
( and ),
confidently validate the planetary nature of two other planets (b & c), and
classify the last two as planetary candidates (K2-266.02 & .06). From a
simultaneous fit of all 6 possible planets, we find that K2-266 b's orbit has
an inclination of 75.32 while the other five planets have
inclinations of 87-90. This observed mutual misalignment may indicate
that K2-266 b formed differently from the other planets in the system. The
brightness of the host star and the relatively large size of the sub-Neptune
sized planets d and e make them well-suited for atmospheric characterization
efforts with facilities like the Hubble Space Telescope and upcoming James Webb
Space Telescope. We also identify an 8.5-day transiting planet candidate
orbiting EPIC248435395, a co-moving companion to K2-266.Comment: 18 pages, 12 figures, 7 tables, Accepted for Publication in the
Astronomical Journa
Absent B Cells, agammaglobulinemia, and Hypertrophic Cardiomyopathy in Folliculin-interacting Protein 1 Deficiency
Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity
Unexpectedly high burden of rotavirus gastroenteritis in very young infants
<p>Abstract</p> <p>Background</p> <p>The highest incidence of rotavirus gastroenteritis has generally been reported in children 6-24 months of age. Young infants are thought to be partially protected by maternal antibodies acquired transplacentally or via breast milk. The purpose of our study was to assess the age distribution of children with confirmed community-acquired rotavirus gastroenteritis presenting to an urban referral hospital.</p> <p>Methods</p> <p>Children presenting to The Children's Hospital of Philadelphia with acute gastroenteritis have been monitored for the presence of rotavirus antigen in the stool by ELISA (followed by genotyping if ELISA-positive) since the 1994-95 epidemic season.</p> <p>Results</p> <p>Over the last 12 rotavirus seasons prior to the introduction of the pentavalent rotavirus vaccine in 2006, stool specimens from 1646 patients tested positive for community-acquired rotavirus infection. Gender or age was not recorded in 6 and 5 cases, respectively. Overall, 58% of the cases occurred in boys. G1 was the predominant VP7 serotype, accounting for 72% of cases. The median (IQR) age was 11 (5-21) months. A total of 790 (48%) cases occurred in children outside the commonly quoted peak age range, with 27% in infants <6 months of age and 21% in children >24 months of age. A total of 220 (13%) cases occurred during the first 3 months of life, and the highest number of episodes per month of age [97 (6%)] was observed during the second month of life.</p> <p>Conclusions</p> <p>The incidence of community-acquired rotavirus gastroenteritis monitored over 12 seasons in the prevaccine era at a major university hospital was nearly constant for each month of age during the first year of life, revealing an unexpectedly high incidence of symptomatic rotavirus disease in infants <3 months old. A sizeable fraction of cases occurred in children too young to have been vaccinated according to current recommendations.</p
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometricâ=â1.28Eâ09 and 4.10Eâ18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.publishedVersio
COVID-19-Related Thrombotic and Bleeding Events in Adults With Congenital Heart Disease.
BACKGROUND
Altered coagulation is a striking feature of COVID-19. Adult patients with congenital heart disease (ACHD) are prone to thromboembolic (TE) and bleeding complications.
OBJECTIVES
The purpose of this study was to investigate the prevalence and risk factors for COVID-19 TE/bleeding complications in ACHD patients.
METHODS
COVID-19-positive ACHD patients were included between May 2020 and November 2021. TE events included ischemic cerebrovascular accident, systemic and pulmonary embolism, deep venous thrombosis, myocardial infarction, and intracardiac thrombosis. Major bleeding included cases with hemoglobin drop >2Â g/dl, involvement of critical sites, or fatal bleeding. Severe infection was defined as need for intensive care unit, endotracheal intubation, renal replacement therapy, extracorporeal membrane oxygenation, or death. Patients with TE/bleeding were compared to those without events. Factors associated with TE/bleeding were determined using logistic regression.
RESULTS
Of 1,988 patients (age 32 [IQR: 25-42] years, 47% male, 59 ACHD centers), 30 (1.5%) had significant TE/bleeding: 12Â TE events, 12 major bleeds, and 6 with both TE and bleeding. Patients with TE/bleeding had higher in-hospital mortality compared to the remainder cohort (33% vs 1.7%; PÂ <Â 0.0001) and were in more advanced physiological stage (PÂ =Â 0.032) and NYHA functional class (PÂ =Â 0.01), had lower baseline oxygen saturation (PÂ =Â 0.0001), and more frequently had a history of atrial arrhythmia (PÂ <Â 0.0001), previous hospitalization for heart failure (PÂ <Â 0.0007), and were more likely hospitalized for COVID-19 (PÂ <Â 0.0001). By multivariable logistic regression, prior anticoagulation (OR: 4.92; 95%Â CI: 2-11.76; PÂ =Â 0.0003), cardiac injury (OR: 5.34; 95%Â CI: 1.98-14.76; PÂ =Â 0.0009), and severe COVID-19 (OR: 17.39; 95%Â CI: 6.67-45.32; PÂ <Â 0.0001) were independently associated with increased risk of TE/bleeding complications.
CONCLUSIONS
ACHD patients with TE/bleeding during COVID-19 infection have a higher in-hospital mortality from the illness. Risk of coagulation disorders is related to severe COVID-19, cardiac injury during infection, and use of anticoagulants
- âŠ