69 research outputs found
North Atlantic SSTs as a Link between the Wintertime NAO and the Following Spring Climate
Abstract
In this paper a potential seasonally lagged impact of the wintertime North Atlantic Oscillation (NAO) on the subsequent spring climate over the European region is explored. Supported by the observational indication of the wintertime NAO–spring climate connection, a modeling approach is used that employs the International Centre for Theoretical Physics (ICTP) atmospheric general circulation model (AGCM) as a stand-alone model and that is also coupled with a mixed layer ocean in the North Atlantic. Both observational and modeled data indicate a pattern of sea surface temperatures (SSTs) in North Atlantic as a possible link between wintertime NAO and climate anomalies in the following spring. The SST pattern is associated with wintertime NAO and persists through the following spring. It is argued that these SST anomalies can affect the springtime atmospheric circulation and surface conditions over Europe. The atmospheric response is recognized in observed as well as in modeled data (mean sea level pressure, temperature, and precipitation). Additionally, an impact on springtime storm activity is found as well.
It is demonstrated that the SST anomalies associated with wintertime NAO persist into the subsequent spring. These SST anomalies enable atmosphere–ocean interaction over the North Atlantic and consequently affect the climate variability over Europe. Although it has a relatively weak impact, the described mechanism provides a temporal teleconnection between the wintertime NAO and subsequent spring climate anomalies
The Response of the Midlatitude Jet to Regional Polar Heating in a Simple Storm-Track Model
Given the recent changes in the Arctic sea ice, understanding the effects of the resultant polar warming on the global climate is of great importance. However, the interaction between the Arctic and midlatitude circulation involves a complex chain of mechanisms, which leaves state-of-the-art general circulation models unable to represent this interaction unambiguously. This study uses an idealized general circulation model to provide a process-based understanding of the sensitivity of the midlatitude circulation to the location of high-latitude warming. A simplified atmosphere is simulated with a single zonally localized midlatitude storm track, which is analogous to the storm tracks in the Northern Hemisphere. It is found that even small changes in the position of the forcing relative to that storm track can lead to very different responses in the midlatitude circulation. More specifically, it is found that heating concentrated in one region may cause a substantially stronger global response compared to when the same amount of heating is distributed across all longitudes at the same latitude. Linear interference between climatological and anomalous flow is an important component of the response, but it does not explain differences between different longitudes of the forcing. Feedbacks from atmospheric transient eddies are found to be associated with this strong response. A dependence between the climatological jet latitude and the jet response to polar surface heating is found. These results can be used to design and interpret experiments with complex state-of-the-art models targeted at Arctic–midlatitude interactions
Teleconnection mechanisms of northeast Brazil droughts: modeling and empirical evidence
Targeted numerical modelling experimaents are conducted to complement the previous empirical diagnostics of circulation mechanisms leading from sea surface temperature (SST) departures in the equatorial Pacific in January to anomalies in the March-April rainy season of Brazil's Nordeste. A weak interhemispheric northward directed SST gradient in the Atlantic favors a more southerly position of the hydrostatically controlled low pressure trough, embedded in which is the Intertropical Convergence Zone (ITCZ), which is the main rainbearing system for the Nordeste. In addition, anomalously warm waters in the equatorial Pacific in January tend to be followed by Nordeste drought. The underlying chain of causalities has been explored by empirical diagnostics and numerical modelling. During El Nino years, an upper-tropospheric wave train extends from the equatorial eastern Pacific to the tropical North Atlantic, affecting the patterns of upper-tropospheric topography and divergence, and hence of vertical motion over the Atlantic. This leads to a weaker meridional pressure gradient on the equatorward flank of the North Atlantic subtropical high, weaker North Atlantic tradewinds, an anomalously far northerly ITCZ position and thus Nordeste drought. The previous empirical diagnostics are overall supported by the modelling experiments
Tropical Indian Ocean Mediates ENSO Influence Over Central Southwest Asia During the Wet Season
AbstractEl Niño–Southern Oscillation (ENSO) modulates wet season (November–April) precipitation over Central Southwest Asia (CSWA), however, intraseasonal characteristics of its influence are largely unknown, which can be important for its subseasonal to seasonal hydroclimate predictability. Here we show that the ENSO‐CSWA teleconnection varies intraseasonally and is a combination of direct and indirect positive influences. The direct influence is through a Rossby wave‐like pattern in the tail months. The indirect influence is through an atmospheric dipole of diabatic heating anomalies in the tropical Indian Ocean (TIO) as a result of ENSO‐forced response, which also generates a Rossby wave‐like forcing and persists throughout the wet season. ENSO exerts its strongest influence when both direct and indirect modes are in phase, while the relationship breaks down when the two modes are out of phase. The atmospheric teleconnection through the atmospheric diabatic heating anomalies in the TIO is reproducible in numerical simulations
The Roles of External Forcings and Internal Variabilities in the Northern Hemisphere Atmospheric Circulation Change from the 1960s to the 1990s
Abstract
The Northern Hemisphere atmospheric circulation change from the 1960s to the 1990s shows a strong positive North Atlantic Oscillation (NAO) and a deepening of the Aleutian low. The issue regarding the contributions of external forcings and internal atmospheric variability to this circulation change has not been resolved satisfactorily. Previous studies have found the importance of tropical SST forcing. Here, this hypothesis is examined again using relatively large ensembles of atmospheric general circulation model simulations of the twentieth-century climate forced only by historically varying SST. The resulting ensemble-mean amplitude underestimates the observed change by at least 70%, although the spatial pattern is reproduced well qualitatively. Furthermore, AGCM experiments are performed to investigate other driving factors, such as the greenhouse gases, sea ice, the stratospheric ozone, as well as the contribution from atmospheric internal variability. The increase in ensemble-mean trend amplitude induced by these additional drivers was not enough to substantially improve the agreement with the observed trend. However, the full distribution of simulated trends reveals that the ensemble members at the upper tail are much closer to the observed amplitude. In the "best" ensemble, the 95th percentile of the simulated NAO trend amplitude remains at about 80% of the observed trend amplitude, with nearly equal contributions from external forcings and internal variability. The results also indicate that a complete set of driving factors and a correct simulation of stratospheric trends are important in bridging the gap between observed and modeled interdecadal variability in the North Atlantic winter circulation
ENSO Amplitude Modulation Associated with the Mean SST Changes in the Tropical Central Pacific Induced by Atlantic Multidecadal Oscillation
Abstract
The mechanism associated with the modulation of the El Niño–Southern Oscillation (ENSO) amplitude caused by the Atlantic multidecadal oscillation (AMO) is investigated by using long-term historical observational data and various types of models. The observational data for the period 1900–2013 show that the ENSO variability weakened during the positive phase of the AMO and strengthened in the negative phase. Such a relationship between the AMO and ENSO amplitude has been reported by a number of previous studies. In the present study the authors demonstrate that the weakening of the ENSO amplitude during the positive phase of the AMO is related to changes of the SST cooling in the eastern and central Pacific accompanied by the easterly wind stress anomalies in the equatorial central Pacific, which were reproduced reasonably well by coupled general circulation model (CGCM) simulations performed with the Atlantic Ocean SST nudged perpetually with the observed SST representing the positive phase of the AMO and the free integration in the other ocean basins. Using a hybrid coupled model, it was determined that the mechanism associated with the weakening of the ENSO amplitude is related to the westward shift and weakening of the ENSO zonal wind stress anomalies accompanied by the westward shift of precipitation anomalies associated with the relatively cold background mean SST over the central Pacific
Analogous seasonal evolution of the South Atlantic SST dipole indices
Two variants of sea-surface temperature (SST) dipole indices for the South Atlantic Ocean (SAO) has been previously described representing: (1) the South Atlantic subtropical dipole (SASD) supposedly peaking in austral summer and (2) the SAO dipole (SAOD) in winter. In this study, we present the analysis of observational data sets (1985–2014) showing the SASD and SAOD as largely constituting the same mode of ocean–atmosphere interaction reminiscent of the SAOD structure peaking in winter. Indeed, winter is the only season in which the inverse correlation between the northern and southern poles of both indices is statistically significant. The observed SASD and SAOD indices exhibit robust correlations (P ≤ 0.001) in all seasons and these are reproduced by 54 of the 63 different models of the Coupled Models Intercomparison Project analysed. Their robust correlations notwithstanding the SASD and SAOD indices appear to better capture different aspects of SAO climate variability and teleconnection
Contribution of Synoptic Transients to the Potential Predictability of PNA Circulation Anomalies: El Niño versus La Niña
Abstract
The potential predictability (PP) of seasonal-mean 200-hPa geopotential height (Z200) anomalies in the Pacific–North American (PNA) region is examined for El Niño and La Niña separately by using 50 ensemble members of twentieth-century AGCM simulations. Observed sea surface temperature (SST) is prescribed for the period 1870–2009, and 14 El Niño and La Niña years after 1900 are selected for the present study. The domain-averaged value of PP for Z200 in the PNA region, as measured by the signal-to-noise ratio, for El Niño is about 60% larger than that of La Niña. Such a large PP is mainly due to a larger signal and partly to less noise during El Niño compared to that during La Niña . The transient eddy feedback to the PNA circulation anomalies is stronger during El Niño events (about 50%) than that during La Niña, and this difference in the transients contributes significantly to the different Z200 signals in the PNA region. The noise variance of the transients during El Niño is about 17% smaller than during La Niña, and thus transients play an important role in the reduction of Z200 noise during El Niño. Idealized experiments with the same spatial pattern but different signs of SST anomalies confirm the results mentioned above. Moreover, these experiments with several different amplitudes of positive and negative phases of tropical Pacific SST anomalies show that signals of Z200 and transients are proportional to precipitation anomalies in the tropical Pacific, and noises of Z200 for El Niño cases are somewhat smaller than the corresponding values of La Niña
- …