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Abstract
Two variants of sea-surface temperature (SST) dipole indices for the South Atlantic Ocean
(SAO) has been previously described representing: (1) the South Atlantic subtropical dipole
(SASD) supposedly peaking in austral summer and (2) the SAO dipole (SAOD) in winter. In
this study, we present the analysis of observational data sets (1985–2014) showing the SASD
and SAOD as largely constituting the same mode of ocean–atmosphere interaction reminiscent
of the SAOD structure peaking in winter. Indeed, winter is the only season in which the inverse
correlation between the northern and southern poles of both indices is statistically significant.
The observed SASD and SAOD indices exhibit robust correlations (P≤ 0.001) in all seasons and
these are reproduced by 54 of the 63 different models of the Coupled Models Intercomparison
Project analysed. Their robust correlations notwithstanding the SASD and SAOD indices
appear to better capture different aspects of SAO climate variability and teleconnections.
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1. Introduction

A dipole structure in sea-surface temperature
(SST) anomalies represents the dominant mode of
ocean–atmosphere fluctuations in the South Atlantic.
The origins of the dipole has been attributed to the
interactions of the ocean mixed layer with atmo-
spheric fluctuations via surface heat fluxes (Fauchereau
et al., 2003; Sterl and Hazeleger, 2003; Trzaska
et al., 2007; Morioka et al., 2011; Nnamchi et al.,
2016). The dipole structure is typically oriented in the
southwest–northeast direction, and two major vari-
ants have been described in the literature – the South
Atlantic subtropical dipole (SASD) and the South
Atlantic Ocean (SAO) dipole (SAOD).

The monthly standard deviation of the SASD index
peaks in austral summer when the SAO mixed layer
depth is shallowest (Morioka et al., 2011). The SASD
is considered as a subtropical mode, with the north-
ernmost part at ∼15∘–25∘S. However, the empiri-
cal orthogonal function (EOF) analysis of seasonally
stratified data sets also shows opposite structure of
SST anomalies between the equatorial and southwest
Atlantic peaking in austral winter (Nnamchi et al.,
2011). This dipole pattern is referred to as the SAOD.
While the northernmost part of the SAOD extends to the
equator and coincides with the Atlantic Niño (ATL3) in
both space and time, leading to the notion that the two
may represent the same mode of variability (Nnamchi

et al., 2016); by definition, the southern part of the
SASD (30∘N–40∘S, 10∘–30∘W) falls within that of the
SAOD (25∘N–40∘S, 10∘–40∘W).

Are SASD and SAOD related or independent modes
of ocean–atmosphere variability? To illustrate this
question, Figure S1, Supporting Information, shows
the first EOF mode of monthly SST anomalies over
the SAO; characterised by a dipole associated with
a basin-scale cyclonic atmospheric anomalies. There
are broad cold anomalies in the southern arms of the
SASD and SAOD as well as in the subtropical and
equatorial warming peaks leading to SASD and SAOD
definitions, respectively. The associated time series
displays interannual-to-decadal fluctuations (Venegas
et al.,1997; Trzaska et al., 2007; Nnamchi et al., 2016)
with robust correlations with the ATL3, SASD, and
SAOD indices (P< 0.001) as shown in Table S1. The
SAOD has similarly significant correlations with the
ATL3 and SASD indices (r ∼ 0.70). The ATL3|SAOD
correlation has been described elsewhere (Nnamchi
et al., 2016) but that of the SASD and SAOD remains
unclear and is therefore the focus of the present study.

2. Data and methods

Using satellite-derived SST data set on 1.0∘ × 1.0∘
latitude–longitude horizontal grids (Reynolds et al.,
2007) and satellite-era atmospheric reanalysis on
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Figure 1. Spatial patterns of the leading S-EOF mode of DJF to SON SST anomalies over the SAO during 1985–2014. Arrows
show statistically significant wind stress anomalies at 95% confidence level.

2.5∘ × 2.5∘ grids (Kanamitsu et al., 2002), we analysed
the 30-year period from 1985 to 2014 with generally
improved observations. We first created SST anomaly
by subtracting the mean annual cycle from the original
data set and then calculated the deviations from the
global-mean warming trend as follows:

SSTA′x,y,t = SSTAx,y,t − 𝛽t

where the subscripts (x, y, t) represent the zonal and
meridional directions and time; SSTA′ denotes the devi-
ations of the SST anomaly (SSTA) at every grid point
(x, y) from the least-squares linear trend coefficient
of the global-mean (𝛽). Other variables were linearly
detrended at every grid point using the least-squares
method. All statistical significance tests are based on
two-tailed t-test. The warm and cold anomalies of the
leading dipole are confined between 5∘N and 50∘S
(Figure S1(a)) and this meridional extent is used for
subsequent analyses.

3. Analyses and results

3.1. Seasonal evolution of the interannual SST
dipole

Patterns of SST anomalies such as dipole in the SAO
primarily represent fluctuations above and below the
mean annual cycle in different seasons of the year.
Different parts of the equatorial and SAO display
marked annual cycle of SST that often exceed the
interannual anomalies in amplitude (Burls et al., 2011;

Nnamchi et al., 2016). Thus, the SST anomalies may
be strongly modulated by the climatological-mean
annual cycles, which denote the background condi-
tions under which the ocean–atmosphere fluctuations
evolve. Here, we investigate the seasonal evolution
of the dominant dipole mode of SAO SST anomalies
using the seasonal-reliant EOF (S-EOF) analysis
(Wang and An, 2005). We define a four-season
sequence that spans from the austral summer of a
year denoted as D(−1) JF(0) to the following spring
[September–October–November (SON)] denoted as
SON(0). To construct the covariance matrix, the SST
anomalies in each seasonal sequence are treated as
an integral block [of one time step for the year (0)].
The EOF decomposition is then performed and the
expansion coefficient (EC) time series derived for each
eigenvector that contains a sequence of four seasonally
evolving SST pattern maps from D(−1)JF(0) to SON
(0). The major advantage of S-EOF analysis over the
conventional method is that the four seasonal maps are
directly related to the yearly EC time series and depict
the overall seasonal evolution.

The leading S-EOF mode is characterised by the evo-
lution of a meridional dipole structure in SST anoma-
lies over the SAO during the course of the seasons
(Figure 1). In DJF, the cold anomalies are mainly con-
fined to the regions around latitude 35∘S and further
south; the rest of the basin is characterised by warm
anomalies. Localised bands of anomalous warm max-
ima are observed close to the northern pole of the SASD
and in the Benguela–equatorial Niño region. The sub-
tropical pattern does not really fit the SASD definition:
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Figure 2. Composite evolution of the SAOD (a–d) and SASD (e–h) SST anomalies. The maps are based on the (±1.0𝜎) composite
difference using the SAOD (SASD) index for JJA (DJF) as lag= 0. The lower panels (i–l) are based on SASD index with JJA as lag= 0.
Stipples denote a statistical significance at P≤ 0.05. The pattern correlations between the corresponding in panels (a–d) and (i–l)
are 0.93, 0.88, 0.96, and 0.92 for DJF, MAM, JJA, and SON, respectively.

the cold anomalies are displaced to the west of the
SASD box while both the cold and warm anomalies
are displaced south by the order of ∼5∘–10∘ of latitude.
There are widespread robust wind anomalies suggestive
of atmospheric-induced origin of the SST anomalies
(Venegas et al., 1997; Sterl and Hazeleger, 2003; Her-
mes and Reason, 2005) and this pattern tends to lead
a similar dipole structure in subtropical Indian Ocean
by 1 month (Hermes and Reason, 2005). In the equato-
rial region, there is a weak Niño-like structure probably
reflecting the type II ATL3 described by Okumura and
Xie (2006) or an early phase of the Benguela Niño.

In MAM, the SST and wind stress anomalies spread
northward such that the cold anomalies reach ∼30∘S
(Figure 1(b)). The cyclonic wind stress anomalies
intensify and are associated with enhanced warming
anomalies from the northern part of the SASD to the
Benguela–equatorial Niño region. This season marks
the peak phase of the Benguela Niño and the large-scale
cyclonic wind stress anomalies appear as northwest-
erly perturbations originating from the equatorial
region (Florenchie et al., 2003, 2004). Nonetheless,
the sequence of the wind stress anomalies from DJF
to MAM points to important roles for atmospheric
anomalies in the southwest subtropics and extratropics.

By JJA, the dipole structure advances further north
(Figure 1(c)); the cold anomalies reach ∼20∘S with
the result that the centre of maximum cold anomalies
clearly fit into the southern poles of both the SASD
and SAOD. Further north, the Benguela Niño weakens

giving rise to a more zonal structure of warming
characteristic of the Atlantic Niño. Compared to MAM,
the wind stress anomalies are generally weaker in
JJA consistent with previous studies suggesting that
peak in wind fluctuations precedes that of SST anoma-
lies (Keenlyside and Latif, 2007; Richter et al., 2013).
While the westerly anomalies persist over the west-
ern equatorial Atlantic, a reversal (to easterlies) occurs
in the eastern basin leading to anomalous convergent
motion over the equatorial ATL3 region: 0∘–20∘W.
Thus, the SST and related wind stress anomalies in
JJA may be driven ocean dynamics consistent with
the heat budget calculations of Nnamchi et al., (2016).
The anomalous easterlies intensify further indicating
a strengthening of the trade winds (Figure 1(d)). This
may then intensify upwelling and evaporation leading
to the decay of the SST anomalies.

3.2. Seasonal variability and correlations of the
dipole SST indices with other climate modes

Here, we investigate how well the SST anomalies
depicted in Figure 1 could be reproduced using com-
posite difference based on a unit standard deviation
(±1.0𝜎) of the SASD and then SAOD index. For the
SASD (SAOD), season (0) is DJF (JJA) on the basis
of previous studies suggesting that the patterns peak
in these seasons (Morioka et al., 2011; Nnamchi et al.,
2011). The composite maps are then lagged in time
for the two preceding and one following season. The
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Figure 3. (a) Correlations of the leading S-EOF mode EC time series of SAO SST anomalies with SST-based indices of dipole.
(b) Coefficients of correlation between the SASD and SAOD indices and (c) between their northern and southern poles. (d–f)
Correlations of the SASD and SAOD indices with Niño-3, SIOD, and ATL3. In all panels, solid (P= 0.05); long-dashed (P= 0.01);
and short-dashed (P= 0.001) grey lines denote statistical significance levels. The Niño-3 is defined as SST anomalies averaged in
the region 5∘N–5∘S, 90∘–150∘W and the SIOD as the difference between averages over (30∘–44∘S, 74∘–44∘E) and (19∘–35∘S,
80∘–110∘E).

results show robust opposite SST anomalies over the
SAO at lag-2, which intensify further at lag-1 leading
to the peak phase of the SAOD similar to the S-EOF
patterns (Figures 2(a)–(d)). However, such progressive
evolution is not found for the SASD (Figures 2(e)–(h));
rather, the SST dipole anomalies are robust only at
lag= 0. It is not surprising therefore that the DJF
SASD and JJA SAOD time series are not correlated
(r = 0.07), consistent with the event-based analysis
which shows that the ±1.0𝜎 SST anomalies do not
tend to occur in the same year (Table S2). On the other
hand, if JJA is used as season (0), the SASD-related
anomalies evolve in a fashion analogous to the SAOD
(Figures 2(i)–(l)) with spatial correlations in the range
of 0.88≥ r ≤ 0.96.

We further investigate the similarity in temporal
evolution of the SASD and SAOD by calculating
their month-by-month correlations with EC1 (which

has a constant value for each year; Figure 3(a)). Both
correlation curves increase progressively from January,
peak in June, and then declines during the remaining
months of the year. The SASD curve notably exceeds
that of the SAOD curve in the first 3 months, but the two
curves converge as from April and by peaking in austral
winter seem to describe the SAOD. The SASD and
SAOD indices are significantly correlated at P< 0.001
in all seasons with a peak in JJA (Figure 3(b)). As a
direct measure of the polarity of these dipole indices, the
inverse correlation between their southern and northern
poles also peak in JJA (Figure 3(c)). Indeed, JJA is the
only season for which the correlation is statistically
significant for both indices; although the anticorrelation
is stronger for the SAOD (P< 0.01) than the SASD
(P< 0.05). The highest absolute correlations in JJA in
all panels of Figures 3(a)–(c) appear to confirm the
occurrence of the SST dipole peak in this season.
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Figure 4. Coefficients of correlation between the SASD and SAOD indices simulated by the CMIP3 and CMIP5 models. The
numbers 1, 2, 3, and 4 correspond to DJF, MAM, JJA, and SON, respectively. The panels are arranged in alphabetical order of model
names: CMIP3 in lower case and CMIP5 in upper case letters. In all panels, solid (P= 0.05); long-dashed (P= 0.01); and short-dashed
(P= 0.001) lines denote statistical significance levels.

Previous studies show that the SAO SST dipole may
be related to the Pacific El Niño (Rodrigues et al.,
2015), the subtropical Indian Ocean dipole (SIOD)
(Hermes and Reason, 2005) and Atlantic Niño (Nnam-
chi et al., 2016). Here, indices representing these cli-
mate modes are correlated with those of the SASD and
SAOD for comparison. The SASD (SAOD) index is
better correlated with the Niño-3 index in DJF (MAM
and JJA) and these seasons depict different phases of
El Niño–SAO dipole correlations (Figure 3(d)). The
dipole is related to the SIOD in DJF and MAM and to
the ATL3 in all seasons; in both cases, the SAOD index
exhibits stronger correlations (Figures 3(e) and (f)).

3.3. Representation in coupled climate models

We have so far shown robust correlations between the
SASD- and SAOD-related anomalies in space and time.

It is then necessary to understand whether the current
generation of state-of-the-art coupled models are able
to reproduce these observed correlations or not. Thus,
we analysed the SST simulated by 63 different numer-
ical models of the Coupled Models Intercomparison
Project phases 3 and 5 (CMIP3/5) (Meehl et al., 2007;
Taylor et al., 2012). This represents the ‘climate of the
20th-century’ experiment of the available 23 CMIP3
(http://www-pcmdi.llnl.gov/ipcc/data_status_tables
.htm) and the 40 CMIP5 (http://cmip-pcmdi.llnl.gov/
cmip5/availability.html) models providing first realisa-
tion of the ‘historical’ experiment. The modelled SSTs
were bilinearly remapped to a common 1.0∘ × 1.0∘
longitude–latitude horizontal grids for comparison
with observational data set (Rayner et al., 2003) and
both were linearly detrended for the last 30 years
available for all models during 1970–1999.

© 2017 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd Atmos. Sci. Let. 18: 396–402 (2017)
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Figure 5. Upper panel: SST anomalies regressed on the SAOD index for JJA based on (a) observational data set, (b) CMIP3/5
multimodel mean, (c) CMIP3 multimodel mean, and (d) CMIP5 multimodel mean. (e–h) Similar to (a–d) but for the SST anomalies
regressed SASD index for JJA.

The seasonality of SASD|SAOD correlation may
be nonstationary in time as the JJA peak during the
1984–2014 (Figure 3(b)) period is not reproduced dur-
ing 1970–1999, although the correlations remain robust
in all seasons (Figure 4). Consistent with observations,
all the CMIP3/5 models simulated positive correlation
between the SASD and SAOD indices in all seasons. At
P≤ 0.001, these correlations are statistically significant
in 54 of the 63 models in all four seasons; 58 models in
at least three seasons and 59 models in at least two sea-
sons – suggesting that the CMIP3/5 models are able to
reproduce the observed robust correlation between the
SASD and SAOD indices. We further examined the spa-
tial distribution of the SST anomalies associated with
the SASD and SAOD indices in the CMIP3/5 mod-
els focusing on JJA during which the dipole has been
shown to peak (Figure 5). The maps were constructed
by regressing SST anomalies onto the dipole indices for
each model and then the multimodel mean calculated
for comparison with observations.

Figures 5(a) and (e) show similar dipole SST response
to both indices with a pattern correlation of 0.94 in
observations. The SASD and SAOD indices correctly
reproduce cold anomalies over southwest Atlantic
Ocean in the CMIP3/5 models. On the other hand,
while the simulated SAOD index is also able to repro-
duce the broad features of the northern warm anomalies
(Figure 5(b)), the SASD shows weak anomalies over
the Benguela–equatorial Niño region (Figure 5(f)).
The CMIP5 models show overall improvements in the
simulation of the SASD compared to CMIP3 – the
pattern correlation with observational data set changes
from 0.71 to 0.80 but the SAOD pattern remains largely
unchanged.

4. Summary and discussions

A comparative analysis of the SASD and SAOD indices
using observational data sets (1985–2014) shows a

peak during the austral winter consistent with the SAOD
definition. Either the SASD or SAOD index may be
used to represent the dipole mode: the two indices yield
closely matched patterns with spatial correlations of
seasonally stratified composite maps in the range of
0.88–0.96. The indices are equally strongly correlated
in time in all seasons (P< 0.001). However, the SAOD
index seems to have stronger polarity and more robust
correlations with SIOD and ATL3. Nonetheless, the
peak phase of El Niño in DJF is correlated with SASD
and it may therefore be more useful for characterising
El Niño teleconnections with the SAO in this season. On
the other hand, El Niño is correlated with the SAOD in
MAM and JJA.

Warm and cold events of the cold tongue tend to occur
on a large-scale encompassing the Benguela and equa-
torial Niño regions (Florenchie et al., 2004; Lübbecke
et al., 2010; Lutz et al., 2013). Whereas previous stud-
ies linked the origins of this broad warming to equato-
rial northwesterly atmospheric fluctuations, our results
suggest important roles for wind stress anomalies in
the southwest SAO subtropics and extratropics start-
ing from the austral summer. The wind anomalies are
underlain by opposite phase in SST giving rise to an
emerging dipole structure (Colberg and Reason, 2007;
Nnamchi et al., 2011, 2016). The dipole evolves pro-
gressively and appears to propagate northward during
the subsequent months with a peak phase in winter con-
sistent with the seasonality of Atlantic Niño.

The present day generation of coupled models appear
to be capable of reproducing the observed robust corre-
lation between the SASD and SAOD indices: 54 of the
63 different CMIP3/5 models analysed have significant
coefficients at P< 0.001 in all seasons. However, the
multimodel mean SST anomalies associated with the
SAOD index better represents the observed ampli-
tudes in the Benguela–equatorial Niño region, often
considered vital for climate fluctuations over tropical
Atlantic and further afield (Losada et al., 2012; Syed
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and Kucharski, 2016; Kucharski and Joshi, 2017).
Nonetheless, the subtropical SAO variability repre-
sented by the SASD affects climate variability in this
region (Morioka et al., 2011; Rodrigues et al., 2015).
Thus, our results suggest that despite robust correlation
between the SASD and SAOD indices, each may better
capture different aspects of SAO climate variability
and teleconnections.
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Figure S1. Leading EOF mode of SST anomalies (January
1985–December 2014) over the South Atlantic Ocean:
5∘N–50∘S, 20∘E–60∘W. Shown are the (a) spatial pattern
and (b) EC time series. In panel (a), the associated variance is
shown in the top right corner; solid green boxes (15∘–25∘S,
0∘–20∘W and 30∘–40∘S, 10∘–30∘W) indicate the SASD
domains (Morioka et al., 2011), the dashed black boxes
(7∘–15∘S, 10∘E–20∘W and 25∘–40∘S, 10∘–40∘W) show the
SAOD domains (Nnamchi et al., 2011).

Table S1. Correlation of the monthly S-EOF EC1 with equatorial
and southern Atlantic SST-based indices, 1985–2014.

Table S2. Years of occurrence of ±1.0𝜎 of the SASD and SAOD
indices, 1985–2014.

References

Burls NJ, Reason CJC, Penven P, Philander SG. 2011. Similarities
between the tropical Atlantic seasonal cycle and ENSO: an energetics
perspective. Journal of Geophysical Research: Oceans 116: C11010.
https://doi.org/10.1029/2011JC007164.

Colberg F, Reason CJC. 2007. Ocean model diagnosis of low frequency
climate variability in the South Atlantic. Journal of Climate 20:
1016–1034.

Fauchereau N, Trzaska S, Richard Y, Roucou P, Camberlin P. 2003.
Sea-surface temperature co-variability in the southern Atlantic and
Indian oceans and its connections with the atmospheric circulation
in the southern hemisphere. International Journal of Climatology 23:
663–677. https://doi.org/10.1002/joc.905.

Florenchie P, Lutjeharms JRE, Reason CJC, Masson S, Rouault M.
2003. The source of Benguela Niños in the South Atlantic Ocean.
Geophysical Research Letters 30: 1505, 10. https://doi.org/10.1029/
2003GL017172.

Florenchie P, Reason CJC, Lutjeharms JRE, Rouault M, Roy
C, Masson S. 2004. Evolution of interannual warm and cold
events in the southeast Atlantic Ocean. Journal of Climate 17:
2318–2334.

Hermes JC, Reason CJ. 2005. Ocean model diagnosis of interannual
coevolving SST variability in the south Indian and South Atlantic
oceans. Journal of Climate 18: 2864–2882.

Kanamitsu M, Ebisuzaki W, Woollen J, Yang S, Hnilo J, Fiorino M,
Potter G. 2002. NCEP–DOE AMIP-II reanalysis (R-2). Bulletin of
the American Meteorological Society 83: 1631–1643. https://doi.org/
10.1175/BAMS-83-11-1631.

Keenlyside NS, Latif M. 2007. Understanding Equatorial Atlantic Inter-
annual Variability. Journal of Climate 20: 131–142.

Kucharski F, Joshi MK. 2017. Influence of tropical South Atlantic
sea surface temperatures on the Indian summer monsoon in CMIP5
models. Quarterly Journal of the Royal Meteorological Society 143:
1351–1363.

Losada T, Rodríguez-Fonseca B, Kucharski F. 2012. Tropical influence
on the summer Mediterranean climate. Atmospheric Science Letters
13: 36–42.

Lübbecke JF, Böning CW, Keenlyside NS, Xie S-P. 2010. On the
connection between Benguela and equatorial Atlantic Niños and
the role of the South Atlantic anticyclone. Journal of Geophysi-
cal Research – Atmospheres 115: C09015. https://doi.org/10.1029/
2009JC005964.

Lutz K, Rathmann J, Jacobeit J. 2013. Classification of warm and
cold water events in the eastern tropical Atlantic Ocean. Atmospheric
Science Letters 14: 102–106.

Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell
JFB, Stouffer RJ, Taylor KE. 2007. The WCRP CMIP3 multi-model
dataset: a new era in climate change research. Bulletin of the American
Meteorological Society 88: 1383–1394.

Morioka Y, Tozuka T, Yamagata T. 2011. On the growth and decay of
the subtropical dipole mode in the South Atlantic. Journal of Climate
24: 5538–5554.

Nnamchi HC, Li J, Anyadike RNC. 2011. Does a dipole mode really
exist in the South Atlantic Ocean? Journal of Geophysical Research:
Atmospheres 116: D15104. https://doi.org/10.1029/2010JD015579.

Nnamchi HC, Li J, Kucharski F, Kang I-S, Keenlyside NS, Chang P,
Farneti R. 2016. An equatorial–extratropical dipole structure of the
Atlantic Niño. Journal of Climate 29: 7295–7311.

Okumura Y, Xie S-P. 2006. Some overlooked features of tropical
Atlantic climate leading to a new Niño-like phenomenon. Journal of
Climate 19: 5859–5874.

Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell
DP, Kent EC, Kaplan A. 2003. Global analyses of sea surface tempera-
ture, sea ice, and night marine air temperature since the late nineteenth
century. Journal of Geophysical Research-Atmospheres 108: 4407.
https://doi.org/10.1029/2002JD002670.

Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax
MG. 2007. Daily high-resolution-blended analyses for sea surface
temperature. Journal of Climate 20: 5473–5496.

Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T.
2013. Multiple causes of interannual sea surface temperature variabil-
ity in the equatorial Atlantic Ocean. Nature Geoscience 6: 43–47.

Sterl A, Hazeleger W. 2003. Coupled variability and air-sea interaction
in the South Atlantic Ocean. Climate Dynamics 21: 559–571.

Rodrigues RR, Campos EJ, Haarsma R. 2015. The impact of ENSO on
the South Atlantic subtropical dipole mode. Journal of Climate 28:
2691–2705.

Syed FS, Kucharski F. 2016. Statistically related coupled modes of
south Asian summer monsoon interannual variability in the tropics.
Atmospheric Science Letters 17: 183–189.

Taylor K, Stouffer R, Meehl G. 2012. An overview of CMIP5 and the
experiment design. Bulletin of the American Meteorological Society
93: 485–498.

Trzaska S, Robertson AW, Farrara JD, Mechoso CR. 2007. South
Atlantic variability arising from air–sea coupling: local mecha-
nisms and tropical–subtropical interactions. Journal of Climate 20:
3345–3365.

Venegas S, Mysak L, Straub D. 1997. Atmosphere–ocean coupled
variability in the South Atlantic. Journal of Climate 10: 2904–2920.

Wang B, An S-I. 2005. A method for detecting season-dependent modes
of climate variability: S-EOF analysis. Geophysical Research Letters
32: L15710. https://doi.org/10.1029/2005GL022709.

© 2017 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd Atmos. Sci. Let. 18: 396–402 (2017)
on behalf of the Royal Meteorological Society.

https://doi.org/10.1029/2011JC007164
https://doi.org/10.1002/joc.905
https://doi.org/10.1029/2003GL017172
https://doi.org/10.1029/2003GL017172
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1029/2009JC005964
https://doi.org/10.1029/2009JC005964
https://doi.org/10.1029/2010JD015579
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1029/2005GL022709

