15 research outputs found

    Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation

    Get PDF
    During growth of multicellular organisms, identities of stem cells and differentiated cells need to be maintained. Cell fate is epigenetically controlled by the conserved Polycomb-group (Pc-G) proteins that repress their target genes by catalyzing histone H3 lysine 27 trimethylation (H3K27me3). Although H3K27me3 is associated with mitotically stable gene repression, a large fraction of H3K27me3 target genes are tissue-specifically activated during differentiation processes. However, in plants it is currently unclear whether H3K27me3 is already present in undifferentiated cells and dynamically regulated to permit tissue-specific gene repression or activation. We used whole-genome tiling arrays to identify the H3K27me3 target genes in undifferentiated cells of the shoot apical meristem and in differentiated leaf cells. Hundreds of genes gain or lose H3K27me3 upon differentiation, demonstrating dynamic regulation of an epigenetic modification in plants. H3K27me3 is correlated with gene repression, and its release preferentially results in tissue-specific gene activation, both during differentiation and in Pc-G mutants. We further reveal meristem- and leaf-specific targeting of individual gene families including known but also likely novel regulators of differentiation and stem cell regulation. Interestingly, H3K27me3 directly represses only specific transcription factor families, but indirectly activates others through H3K27me3-mediated silencing of microRNA genes. Furthermore, H3K27me3 targeting of genes involved in biosynthesis, transport, perception, and signal transduction of the phytohormone auxin demonstrates control of an entire signaling pathway. Based on these and previous analyses, we propose that H3K27me3 is one of the major determinants of tissue-specific expression patterns in plants, which restricts expression of its direct targets and promotes gene expression indirectly by repressing miRNA genes

    Antagonistic Roles of SEPALLATA3, FT and FLC Genes as Targets of the Polycomb Group Gene CURLY LEAF

    Get PDF
    In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression. We show that the suppressors correspond to mutations in FPA and FT, two genes promoting flowering, and in SEPALLATA3 (SEP3) which encodes a co-factor for AG protein. The suppression of the clf phenotype is correlated with low SEP3 expression in all case and reveals that SEP3 has a role in promoting flowering in addition to its role in controlling floral organ identity. Genetic analysis of clf ft mutants indicates that CLF promotes flowering by reducing expression of FLC, a repressor of flowering. We conclude that SEP3 is the key target mediating the clf phenotype, and that the antagonistic effects of CLF target genes masks a role for CLF in promoting flowering

    Conceptualizing and measuring strategy implementation – a multi-dimensional view

    Get PDF
    Through quantitative methodological approaches for studying the strategic management and planning process, analysis of data from 208 senior managers involved in strategy processes within ten UK industrial sectors provides evidence on the measurement properties of a multi-dimensional instrument that assesses ten dimensions of strategy implementation. Using exploratory factor analysis, results indicate the sub-constructs (the ten dimensions) are uni-dimensional factors with acceptable reliability and validity; whilst using three additional measures, and correlation and hierarchical regression analysis, the nomological validity for the multi-dimensional strategy implementation construct was established. Relative importance of ten strategy implementation dimensions (activities) for practicing managers is highlighted, with the mutually and combinative effects drawing conclusion that senior management involvement leads the way among the ten key identified activities vital for successful strategy implementation

    Tissue-Specific Expression of FLOWERING LOCUS T in Arabidopsis Is Maintained Independently of Polycomb Group Protein Repression[W][OA]

    Get PDF
    This study shows that the role of Polycomb Group (PcG) proteins in the regulatory network determining tissue-specific expression is not identical for all PcG-target genes. The data suggest that a positive regulatory factor produced in differentiated phloem companion cells sets a prerequisite for FT expression

    A citizen science model for implementing statewide educational DNA barcoding.

    No full text
    Our aim was to develop a widely available educational program in which students conducted authentic research that met the expectations of both the scientific and educational communities. This paper describes the development and implementation of a citizen science project based on DNA barcoding of reptile specimens obtained from the Museums Victoria frozen tissue collection. The student program was run by the Gene Technology Access Centre (GTAC) and was delivered as a "one day plus one lesson" format incorporating a one-day wet laboratory workshop followed by a single lesson at school utilising online bioinformatics tools. The project leveraged the complementary resources and expertise of the research and educational partners to generate robust scientific data that could be analysed with confidence, meet the requirements of the Victorian state education curriculum, and provide participating students with an enhanced learning experience. During two 1-week stints in 2013 and 2014, 406 students mentored by 44 postgraduate university students participated in the project. Students worked mainly in pairs to process ~200 tissue samples cut from 53 curated reptile specimens representing 17 species. A total of 27 novel Cytochrome Oxidase subunit 1 (CO1) sequences were ultimately generated for 8 south-east Australian reptile species of the families Scincidae and Agamidae

    The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective

    Get PDF
    A major aim of this review is to determine which physiological functions are adopted by adults and larvae to survive the winter season with low food supply and their relative importance. A second aim is to clarify the extent to which seasonal variation in larval and adult krill physiology is mediated by environmental factors with a strong seasonality, such as food supply or day light. Experimental studies on adult krill have demonstrated that speciWc physiological adaptations during autumn and winter, such as reduced metabolic rates and feeding activity, are not caused simply by the scarcity of food, as was previously assumed. These adaptations appear to be inXuenced by the local light regime. The physiological functions that larval krill adopt during winter (reduced metabolism, delayed development, lipid utilisation, and variable growth rates) are, in contrast to the adults, under direct control by the available food supply. During winter, the adults often seem to have little association with sea ice (at least until early spring). The larvae, however, feed within sea ice but mainly on the grazers of the ice algal community rather than on the algae themselves. In this respect, a miss-match in timing of the occurrence of the last phytoplankton blooms in autumn and the start of the sea ice formation, as has been increasingly observed in the west Antarctic Peninsula (WAP) region, will impact larval krill development during winter in terms of food supply and consequently the krill stock in this region

    Physiology of Euphausia superba

    Get PDF
    Since the 1920s, E. superba is one of the best studied species in the Southern Ocean in terms of their general biology. The main driver for this research focus has been the fisheries’ requirements for stock forecasting and conservation measures. Nowadays this is joined by concerns over climate change effects and the requirement to take a more holistic over view to understand food web structures. So far, however, we do not have a clear understanding of the physiological response of krill and hence their adaptability to cope with ongoing environmental changes, caused by the anthropogenic carbon emissions. This is due to the extreme lack of intense studies on krill physiology, especially of their larval stages in relation to their seasonal environment. A major aim of this book chapter is on the one hand to summaries how physiological functions such as lipid accumulation and utilisation, metabolic activity and growth change with ontogeny and season and to demonstrate which environmental factors are the main drivers for seasonal variability of these functions in adult and larval krill. On the other hand, we draw the attention to the importance of photoperiod (day length) as an entrainment cue for endogenous rhythms and clocks in the life cycle of krill. Furthermore, we give an overview of the current knowledge on the impact of elevated seawater temperature and ocean acidification on krill

    The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill

    Get PDF
    © 2017 The Author(s). A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring
    corecore