89 research outputs found

    The curvature perturbation at second order

    Get PDF
    We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable quantities at second-order and beyond in multiple-field inflation. We show that traditional cosmological perturbation theory and the `separate universe' approach yield equivalent expressions for superhorizon wavenumbers, and in particular that all nonlocal terms can be eliminated from the perturbation-theory expressions

    The role of human milk nutrients in preventing necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) is an intestinal disease that primarily impacts preterm infants. The pathophysiology of NEC involves a complex interplay of factors that result in a deleterious immune response, injury to the intestinal mucosa, and in its most severe form, irreversible intestinal necrosis. Treatments for NEC remain limited, but one of the most effective preventative strategies for NEC is the provision of breast milk feeds. In this review, we discuss mechanisms by which bioactive nutrients in breast milk impact neonatal intestinal physiology and the development of NEC. We also review experimental models of NEC that have been used to study the role of breast milk components in disease pathophysiology. These models are necessary to accelerate mechanistic research and improve outcomes for neonates with NEC

    Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data

    Get PDF
    The pi-N s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the pionic deuterium x-ray data using a non-relativistic approach in which the pi-N interaction is simulated by a short-ranged potential. The pi-d scattering length has been calculated exactly by solving the Faddeev equations and also by using a static approximation. It has been shown that the same very accurate static formula for pi-d scattering length can be derived (i) from a set of boundary conditions; (ii) by a reduction of Faddeev equations; and (iii) through a summation of Feynman diagrams. By imposing the requirement that the pi-d scattering length, resulting from Faddeev-type calculation, be in agreement with pionic deuterium data, we obtain bounds on the pi-N scattering lengths. The dominant source of uncertainty on the deduced values of the pi-N scattering lengths are the experimental errors in the pionic hydrogen data.Comment: RevTeX, 20 pages,4 PostScript figure

    Local non-Gaussianity from rapidly varying sound speeds

    Get PDF
    We study the effect of non-trivial sound speeds on local-type non-Gaussianity during multiple-field inflation. To this end, we consider a model of multiple-field DBI and use the deltaN formalism to track the super-horizon evolution of perturbations. By adopting a sum separable Hubble parameter we derive analytic expressions for the relevant quantities in the two-field case, valid beyond slow variation. We find that non-trivial sound speeds can, in principle, curve the trajectory in such a way that significant local-type non-Gaussianity is produced. Deviations from slow variation, such as rapidly varying sound speeds, enhance this effect. To illustrate our results we consider two-field inflation in the tip regions of two warped throats and find large local-type non-Gaussianity produced towards the end of the inflationary process.Comment: 30 pages, 7 figures; typos corrected, references added, accepted for publication in JCA

    Numerical evaluation of the bispectrum in multiple field inflation

    Get PDF
    We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or 'in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with |fNL| of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics

    Get PDF
    The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing
    corecore