116 research outputs found

    Valence band offset of the ZnO/AlN heterojunction determined by X-ray photoemission spectroscopy

    Get PDF
    The valence band offset of ZnO/AlN heterojunctions is determined by high resolution x-ray photoemission spectroscopy. The valence band of ZnO is found to be 0.43±0.17 eV below that of AlN. Together with the resulting conduction band offset of 3.29±0.20 eV, this indicates that a type-II (staggered) band line up exists at the ZnO/AlN heterojunction. Using the III-nitride band offsets and the transitivity rule, the valence band offsets for ZnO/GaN and ZnO/InN heterojunctions are derived as 1.37 and 1.95 eV, respectively, significantly higher than the previously determined values

    Fabrication and Optical Properties of a Fully Hybrid Epitaxial ZnO-Based Microcavity in the Strong Coupling Regime

    Full text link
    In order to achieve polariton lasing at room temperature, a new fabrication methodology for planar microcavities is proposed: a ZnO-based microcavity in which the active region is epitaxially grown on an AlGaN/AlN/Si substrate and in which two dielectric mirrors are used. This approach allows as to simultaneously obtain a high-quality active layer together with a high photonic confinement as demonstrated through macro-, and micro-photoluminescence ({\mu}-PL) and reflectivity experiments. A quality factor of 675 and a maximum PL emission at k=0 are evidenced thanks to {\mu}-PL, revealing an efficient polaritonic relaxation even at low excitation power.Comment: 12 pages, 3 figure

    High Electron Mobility in AlGaN/GaN Heterostructures Grown on Bulk GaN Substrates

    Get PDF
    Dislocation-free high-quality AlGaN/GaN heterostructures have been grown by molecular-beam epitaxy on semi-insulating bulk GaN substrates. Hall measurements performed in the 300 K–50 mK range show a low-temperature electron mobility exceeding 60 000 cm2/V s for an electron sheet density of 2.4×1012 cm−2. Magnetotransport experiments performed up to 15 T exhibit well-defined quantum Hall-effect features. The structures corresponding to the cyclotron and spin splitting were clearly resolved. From an analysis of the Shubnikov de Hass oscillations and the low-temperature mobility we found the quantum and transport scattering times to be 0.4 and 8.2 ps, respectively. The high ratio of the scattering to quantum relaxation time indicates that the main scattering mechanisms, at low temperatures, are due to long-range potentials, such as Coulomb potentials of ionized impurities

    Anemos : development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms

    No full text
    International audienceThis paper presents the objectives and the research work carried out in the frame of the ANEMOS project on short-term wind power forecasting. The aim of the project is to develop accurate models that substantially outperform current state-of-the-art methods, for onshore and offshore wind power forecasting, exploiting both statistical and physical modeling approaches. The project focus on prediction horizons up to 48 hours ahead and investigates predictability of wind for higher horizons up to 7 days ahead useful i.e. for maintenance scheduling. Emphasis is given on the integration of highresolution meteorological forecasts. For the offshore case, marine meteorology is considered as well as information by satellite-radar images. An integrated software platform, ‘ANEMOS', is developed to host the various models. This system will be installed by several utilities for on-line operation at onshore and offshore wind farms for prediction at a local, regional and national scale. The applications include different terrain types and wind climates, on- and offshore cases, and interconnected or island grids. The on-line operation by the utilities will allow validation of the models and an analysis of the value of wind prediction for a competitive integration of wind energy in the developing liberalized electricity markets in the EU

    Quantitative measurement of thyroglobulin mRNA in peripheral blood of patients after total thyroidectomy

    Get PDF
    Previous studies have reported the clinical usefulness of reverse transcription-polymerase chain reaction (RT-PCR) detection of thyroglobulin (TG) mRNA in the peripheral blood of patients with differentiated thyroid carcinoma. To evaluate this usefulness, we measured TG mRNA in the peripheral blood of patients diagnosed with thyroid carcinoma after total thyroidectomy by real-time quantitative RT-PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as an internal control. Surprisingly, we detected TG mRNA in all samples obtained after total thyroidectomy, including those from 4 medullary carcinomas. Further, there was no statistical difference in expression levels of TG mRNA in the patients with or without metastasis, and no significant correlation was found between serum TG concentrations and the expression levels of TG mRNA. These results give rise to a question regarding the clinical applications of not only RT-PCR detection but also quantitative measurement of TG mRNA in peripheral blood. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Low temperature method for the production of calcium phosphate fillers

    Get PDF
    BACKGROUND: Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. METHODS: Commercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation. RESULTS: The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains. CONCLUSIONS: The dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues

    Next Generation Short-Term Forecasting of Wind Power – Overview of the ANEMOS Project.

    No full text
    International audienceThe aim of the European Project ANEMOS is to develop accurate and robust models that substantially outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced statistical, physical and combined modelling approaches were developed for this purpose. Priority was given to methods for on-line uncertainty and prediction risk assessment. An integrated software platform, 'ANEMOS', was developed to host the various models. This system is installed by several end-users for on-line operation and evaluation at a local, regional and national scale. Finally, the project demonstrates the value of wind forecasts for the power system management and market integration of wind power. Keywords: Wind power, short-term forecasting, numerical weather predictions, on-line software, tools for wind integration

    A predictive model relating daily fluctuations in summer temperatures and mortality rates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality.</p> <p>Methods</p> <p>The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined.</p> <p>The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A "backward" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975–2002) used to estimate the model.</p> <p>Results</p> <p>The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day <it>t </it>and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model.</p> <p>Conclusion</p> <p>Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves.</p
    • 

    corecore