178 research outputs found

    Long-range repulsive interaction between TTF molecules on a metal surface induced by charge transfer

    Full text link
    The low-coverage adsorption of a molecular electron donor, tetrathiafulvalene, on Au(111) is characterized by the spontaneous formation of superlattice of monomers, whose spacing exceeds the equilibrium distance of non-covalent interactions and depends on coverage. The origin of this peculiar growth mode is due to a long-range repulsive interaction between molecules. The analysis of molecular-pair distributions obtained by scanning tunneling microscopy measurements permits us to determine that the nature of TTF intermolecular interactions on Au (111) is electrostatic. A repulsion between molecules is caused by the accumulation of charge due to electron donation into the metal surface, as pictured through density functional theory calculations

    Formation of dispersive hybrid bands at an organic-metal interface

    Get PDF
    An electronic band with quasi-one dimensional dispersion is found at the interface between a monolayer of a charge-transfer complex (TTF-TCNQ) and a Au(111) surface. Combined local spectroscopy and numerical calculations show that the band results from a complex mixing of metal and molecular states. The molecular layer folds the underlying metal states and mixes with them selectively, through the TTF component, giving rise to anisotropic hybrid bands. Our results suggest that, by tuning the components of such molecular layers, the dimensionality and dispersion of organic-metal interface states can be engineered

    Characterization of the unoccupied and partially occupied states of TTF-TCNQ by XANES and first-principles calculations

    Get PDF
    We report a combined experimental and theoretical study of the unoccupied electronic states of the neutral molecular organic materials TTF (tetrathiafulvalene) and TCNQ (7,7,8,8-tetracyano-p-quinodimethane) and of the one-dimensional metallic charge transfer salt TTF-TCNQ. The experimental density of states (DOS) is obtained by x-ray absorption near edge spectroscopy (XANES) with synchrotron light and the predicted DOS by means of first-principles density functional theory calculations. Most of the experimentally derived element-specific XANES features can be associated to molecular orbitals of defined symmetry. Because of the planar geometry of the TTF and TCNQ molecules and the polarization of the synchrotron light, the energy dependent σ or π character of the orbitals can be inferred from angular dependent XANES measurements. The present work represents the state of the art analysis of the XANES spectra of this type of materials and points out the need for additional work in order to elucidate the governing selection rules in the excitation process.Peer reviewe

    Spin density wave and superconducting properties of nanoparticle organic conductor assemblies

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.The magnetic susceptibilities of nanoparticle assemblies of two Bechgaard salts (TMTSF)2PF6 and (TMTSF)2ClO4, have been studied vs temperature and magnetic field. In the bulk these materials exhibit a spin density wave formation (TSDW=12K) and superconductivity (Tc=1.2K), respectively. We show from inductive (susceptibility) measurements that the nanoparticle assemblies exhibit ground-state phase transitions similar to those of randomly oriented polycrystalline samples of the parent materials. Resistivity and diamagnetic shielding measurements yield additional information on the functional nanoparticle structure in terms of stoichiometric and nonstoichiometric composition.This work was supported by NSF-DMR Grants No. 1005293 and No. 1309146, and the NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. Department of Energy. I.C. thanks the French Ministére de l’Enseignement Supérieur et de la Recherche (MESR) for a Ph.D. grant.Peer Reviewe

    Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions

    Get PDF
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Tecnològiques. 2008Monolithic mass sensors for ultrasensitive mass detection in air conditions have been fabricated using a conventional 0.35 μm complementary metal-oxide-semiconductor (CMOS) process. The mass sensors are based on electrostatically excited submicrometer scale cantilevers integrated with CMOS electronics. The devices have been calibrated obtaining an experimental sensitivity of 6×10−11 g/cm2 Hz equivalent to 0.9 ag/Hz for locally deposited mass. Results from time-resolved mass measurements are also presented. An evaluation of the mass resolution have been performed obtaining a value of 2.4×10−17 g in air conditions, resulting in an improvement of these devices from previous works in terms of sensitivity, resolution, and fabrication process complexity

    Evidence for Extended Aqueous Alteration in CR Carbonaceous Chondrites

    Get PDF
    We are currently studying the chemical interrelationships between the main rockforming components of carbonaceous chondrites (hereafter CC), e.g. silicate chondrules, refractory inclusions and metal grains, and the surrounding meteorite matrices. It is thought that the fine-grained materials that form CC matrices are representing samples of relatively unprocessed protoplanetary disk materials [1-3]. In fact, modern non-destructive analytical techniques have shown that CC matrices host a large diversity of stellar grains from many distinguishable stellar sources [4]. Aqueous alteration has played a role in homogeneizing the isotopic content that allows the identification of presolar grains [5]. On the other hand, detailed analytical techniques have found that the aqueously-altered CR, CM and CI chondrite groups contain matrices in which the organic matter has experienced significant processing concomitant to the formation of clays and other minerals. In this sense, clays have been found to be directly associated with complex organics [6, 7]. CR chondrites are particularly relevant in this context as this chondrite group contains abundant metal grains in the interstitial matrix, and inside glassy silicate chondrules. It is important because CR are known for exhibiting a large complexity of organic compounds [8-10], and only metallic Fe is considered essential in Fischer-Tropsch catalysis of organics [11-13]. Therefore, CR chondrites can be considered primitive materials capable to provide clues on the role played by aqueous alteration in the chemical evolution of their parent asteroids

    Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    Get PDF
    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray induced photoemission spectroscopy turns out to be a valuable non-destructive diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state exclusively from the observation of a pseudogap.Comment: 11 pages, 12 figures, v2: minor changes in text and figure labellin

    Multiscale study of mononuclear Co-II SMMs based on curcuminoid ligands

    Get PDF
    This work introduces a novel family of Co-II species having a curcuminoid (CCMoid) ligand, 9Accm, attached, namely [Co(9Accm)(2)(py)(2)] (1) and [Co(9Accm)(2)(2,2'-bpy)] (2), achieved in high yields by the use of a microwave reactor, and exhibiting two different arrangements for the 9Accm ligands, described as 'cis'(2) and 'trans'(1). The study of the similarities/differences of the magnetic, luminescent and surface behaviors of the two new species, 1 and 2, is the main objective of the present work. The determined single-crystal structures of both compounds are the only Co-II-CCMoid structures described in the literature so far. Both compounds exhibit large positive D values, that of 1 (D = +74 cm(-1)) being three times larger than that of 2 (D = +24 cm(-1)), and behave as mononuclear Single-Molecule Magnets (SMMs) in the presence of an external magnetic field. Their similar structures but different anisotropy and SMM characteristics provide, for the first time, deep insight on the spin-orbital effects thanks to the use of CASSCF/NEVPT2 calculations implementing such contributions. Further magnetic studies were performed in solution by means of paramagnetic H-1 NMR, where both compounds (1 and 2) are stable in CDCl3 and display high symmetry. Paramagnetic NMR appears to be a useful diagnostic tool for the identification of such molecules in solution, where the resonance values found for the methine group (-CH-) of 9Accm vary significantly depending on the cis or trans disposition of the ligands. Fluorescence studies show that both systems display chelation enhancement of quenching (CHEQ) with regard to the free ligand, while 1 and 2 display similar quantum yields. Deposition of 1-2 on HOPG and Si(100) surfaces using spin-coating was studied using AFM; UV photoemission experiments under the same conditions display 2 as the most robust system. The measured occupied density of states of 2 with UV photoemission is in excellent agreement with theoretical DFT calculations

    In situ real-time characterization of block copolymer self-assembly processes by GISAXS

    Get PDF
    E-MRS Spring Meeting and Exhibit will be held in the Convention Centre of Strasbourg (France), from June 18 to 22 (2018). .--https://www.european-mrs.com/block-copolymer-self-assembly-fundamentals-and-applications-emr
    • …
    corecore