12 research outputs found

    Retinoic Acid Controls the Bilateral Symmetry of Somite Formation in the Mouse Embryo

    Get PDF
    A striking characteristic of vertebrate embryos is their bilaterally symmetric body plan, which is particularly obvious at the level of the somites and their derivatives such as the vertebral column. Segmentation of the presomitic mesoderm must therefore be tightly coordinated along the left and right embryonic sides. We show that mutant mice defective for retinoic acid synthesis exhibit delayed somite formation on the right side. Asymmetric somite formation correlates with a left-right desynchronization of the segmentation clock oscillations. These data implicate retinoic acid as an endogenous signal that maintains the bilateral synchrony of mesoderm segmentation, and therefore controls bilateral symmetry, in vertebrate embryos

    Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration

    Get PDF
    Retinoic acid is a powerful regulator of brain development, however its postnatal functions only start to be elucidated. We show that retinoic acid receptor beta (RAR beta), is involved in neuroprotection of striatopallidal medium spiny neurons (spMSNs), the cell type affected in different neuropsychiatric disorders and particularly prone to degenerate in Huntington disease (HD). Accordingly, the number of spMSNs was reduced in the striatum of adult Rar beta(-/-) mice, which may result from mitochondrial dysfunction and neurodegeneration. Mitochondria morphology was abnormal in mutant mice whereas in cultured striatal Rar beta(-/-) neurons mitochondria displayed exacerbated depolarization, and fragmentation followed by cell death in response to glutamate or thapsigargininduced calcium increase. In vivo, Rar beta(-/-)spMSNs were also more vulnerable to the mitochondrial toxin 3-nitropropionic acid (3NP), known to induce HD symptoms in human and rodents. In contrary, an RAR beta agonist, AC261066, decreased glutamate-induced toxicity in primary striatal neurons in vitro, and diminished mitochondrial dysfunction, spMSN cell death and motor deficits induced in wild type mice by 3NP. We demonstrate that the striatopallidal pathway is compromised in Rar beta(-/-) mice and associated with HD-like motor abnormalities. Importantly, similar motor abnormalities and selective reduction of spMSNs were induced by striatal or spMSNspecific inactivation of RAR beta, further supporting a neuroprotective role of RAR beta in postnatal striatum

    Developmental expression of the mouse Evx-2 gene: relationship with the evolution of the HOM/Hox complex

    No full text
    The mouse Evx-2 gene is located in the immediate vicinity of the Hoxd-13 gene, the most posteriorly expressed gene of the HOXD complex. While the Evx-1 gene is also physically linked to the HOXA complex, it is more distantly located from the corresponding Hoxa-13 gene. We have analysed the expression of Evx-2 during development and compared it to that of Evx-1 and Hoxd-13. We show that, even though Evx-2 is expressed in the developing CNS in a pattern resembling that of other Evx-related genes, the overall expression profile is similar to that of the neighbouring limbs and genitalia. We propose that the acquisition of expression features typical of Hox genes, together with the disappearance of some expression traits common to Evx genes, is due to the close physical linkage of Evx-2 to the HOXD complex, which results in Evx-2 expression being partly controlled by mechanisms acting in the HOX complex. This transposition of the Evx-2 gene next to the Hoxd-13 gene may have occurred soon after the large scale duplications of the HOX complexes. A scheme is proposed to account for the functional evolution of eve-related genes in the context of their linkage to the HOM/Hox complexes

    Expression of the murine retinol dehydrogenase 10 (Rdh10) gene correlates with many sites of retinoid signalling during embryogenesis and organ differentiation.

    No full text
    Retinoic acid acts as a signalling molecule regulating many developmental events in vertebrates. As this molecule directly influences gene expression by activating nuclear receptors, its patterns of synthesis have to be tightly regulated, and it is well established that at least three retinaldehyde dehydrogenases (RALDHs) are involved in such tissue-specific synthesis. Whereas embryos from oviparous species can obtain retinaldehyde by metabolizing carotenoids stored in the yolk, placental embryos rely on retinol transferred from the maternal circulation. Here, we show that the gene encoding one of the murine retinol dehydrogenases, Rdh10, is expressed according to complex profiles both during early embryogenesis and organ differentiation. Many of its expression sites correlate with regions of active retinoid signalling and Raldh gene expression, especially with Raldh2 in the early presomitic and somitic mesoderm, retrocardiac and posterior branchial arch region, or later in the pleural mesothelium and kidney cortical region. Rdh10 also shows cell-type and/or regional specificity during development of the palate, teeth, and olfactory system. During limb bud development, it may participate in retinoic acid production in proximal/posterior cells, and eventually in interdigital mesenchyme. These data implicate the retinol to retinaldehyde conversion as the first step in the tissue-specific regulation of retinoic acid synthesis, at least in mammalian embryos

    Specific expression of the retinoic acid-synthesizing enzyme RALDH2 during mouse inner ear development

    No full text
    Retinoid binding proteins and nuclear receptors are expressed in the developing mouse inner ear. Here, we report that the retinaldehyde dehydrogenase 2 (Raldh2) gene, whose product is involved in the enzymatic generation of retinoic acid (RA), exhibits a restricted expression pattern during mouse inner ear ontogenesis. The Raldh2 gene is first expressed at embryonic day (E) 10.5 in a V-shaped medio-dorsal region of the otocyst outer epithelium, which evolves as two separate domains upon otocyst morphogenesis. At E14.5, Raldh2 is expressed in two areas of the utricle epithelium and specific regions of the saccule and cochlear mesenchyme. Later, Raldh2 transcripts are restricted to two cochlear areas, the stria vascularis and Reissner membrane. Raldh2 mesenchymal expression did not correlate with migrating neural crest-derived melanoblasts. These restricted expression domains may correspond to specific sites of RA synthesis during inner ear morphogenesis

    Retinoic acid regulates olfactory progenitor cell fate and differentiation.

    Get PDF
    International audienceBACKGROUND: In order to fulfill their chemosensory function, olfactory neurons are in direct contact with the external environment and are therefore exposed to environmental aggressive factors. Olfaction is maintained through life because, unlike for other sensory neuroepithelia, olfactory neurons have a unique capacity to regenerate after trauma. The mechanisms that control the ontogenesis and regenerative ability of these neurons are not fully understood. Here, we used various experimental approaches in two model systems (chick and mouse) to assess the contribution of retinoic acid signaling in the induction of the olfactory epithelium, the generation and maintenance of progenitor populations, and the ontogenesis and differentiation of olfactory neurons. RESULTS: We show that retinoic acid signaling, although dispensable for initial induction of the olfactory placode, plays a key role in neurogenesis within this neuroepithelium. Retinoic acid depletion in the olfactory epithelium, both in chick and mouse models, results in a failure of progenitor cell maintenance and, consequently, differentiation of olfactory neurons is not sustained. Using an explant system, we further show that renewal of olfactory neurons is hindered if the olfactory epithelium is unable to synthesize retinoic acid. CONCLUSIONS: Our data show that retinoic acid is not a simple placodal inductive signal, but rather controls olfactory neuronal production by regulating the fate of olfactory progenitor cells. Retinaldehyde dehydrogenase 3 (RALDH3) is the key enzyme required to generate retinoic acid within the olfactory epithelium
    corecore