28 research outputs found

    Mechanistic insight into RET kinase inhibitors targeting the DFG-out conformation in RET-rearranged cancer

    Get PDF
    Oncogenic fusion events have been identified in a broad range of tumors. Among them, RET rearrangements represent distinct and potentially druggable targets that are recurrently found in lung adenocarcinomas. Here, we provide further evidence that current anti-RET drugs may not be potent enough to induce durable responses in such tumors. We report that potent inhibitors such as AD80 or ponatinib that stably bind in the DFG-out conformation of RET may overcome these limitations and selectively kill RET-rearranged tumors. Using chemical genomics in conjunction with phosphoproteomic analyses in RET-rearranged cells we identify the CCDC6-RETI788N mutation and drug-induced MAPK pathway reactivation as possible mechanisms, by which tumors may escape the activity of RET inhibitors. Our data provide mechanistic insight into the druggability of RET kinase fusions that may be of help for the development of effective therapies targeting such tumors

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data

    Get PDF
    Genomic translocation events frequently underlie cancer development through generation of gene fusions with oncogenic properties. Identification of such fusion transcripts by transcriptome sequencing might help to discover new potential therapeutic targets. We developed TRUP (Tumor-specimen suited RNA-seq Unified Pipeline) (https://github.com/ruping/TRUP), a computational approach that combines split-read and read-pair analysis with de novo assembly for the identification of chimeric transcripts in cancer specimens. We apply TRUP to RNA-seq data of different tumor types, and find it to be more sensitive than alternative tools in detecting chimeric transcripts, such as secondary rearrangements in EML4-ALK-positive lung tumors, or recurrent inactivating rearrangements affecting RASSF8

    Ectopic expression of the Ets transcription factor ER81 in transgenic mouse mammary gland enhances both urokinase plasminogen activator and stromelysin-1 transcription

    No full text
    The PEA3 group members PEA3, ER81 and ERM, which are highly conserved transcription factors from the Ets family, are over-expressed in metastatic mammary tumors. In the current study, we present the characterization of a transgenic mouse strain which over-expresses ER81 in the mammary gland via the long terminal repeat of the mouse mammary tumor virus (LTR-MMTV). Although six genotypically positive transgenic lines were identified, only one expressed the ectopic transcript with an exclusive expression in the lactating and late-pregnancy (18th day) mammary glands. No mammary tumor or mammary deregulation appeared after 2 years of ectopic ER81 expression following lactation. We then sought to identify ER81 target genes, and the urokinase plasminogen activator (uPA) and the stromelysin-1, two enzymes involved in extracellular matrix degradation, were found to be transcriptionally upregulated in lactating mammary glands over-expressing ER81. Since these enzymes are involved in metastasis, this murine model could be further used to enhance mammary cancer metastatic process by crossing these animals with mice carrying non-metastatic mammary tumors. We thus created a transgenic mouse model permitting the over-expression of a functionally active Ets transcription factor in the mammary gland without perturbing its development.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Inducible shRNA expression for application in a prostate cancer mouse model

    No full text
    RNA interference (RNAi) is a powerful tool to induce loss-of-function phenotypes by inhibiting gene expression post-transcriptionally. Synthetic short interfering RNAs (siRNAs) as well as vector-based siRNA expression systems have been used successfully to silence gene expression in a variety of biological systems. We describe the development of an inducible siRNA expression system that is based on the tetracycline repressor and eukaryotic RNA polymerase III promoters (U6 and 7SK). For proof of concept we selectively inhibited expression of two catalytic subunits of the phosphatidylinositol 3-kinase (PI 3-kinase), p110α and p110β, by using vector-derived short hairpin RNAs (shRNAs). Stable pools of human prostate cancer cells (PC-3) exhibiting reduced levels of both PI 3-kinase catalytic subunits due to the expression of corresponding shRNAs in an inducible fashion were established and analyzed for their invasive potential in vitro as well as in an orthotopic metastatic mouse model. This inducible system for RNAi allows an unbiased and comparable analysis of loss-of-function phenotypes by comparing selected isogenic cell populations on the induced and non-induced level. In addition, conditional RNAi allows the study of essential and multifunctional genes involved in complex biological processes by preventing inhibitory and compensatory effects caused by constitutive knockdown

    Characterization of the HSD17B4 gene: D-specific multifunctional protein 2/17β-hydroxysteroid dehydrogenase IV

    No full text
    The HSD17B4 gene codes for a 80 kDa multifunctional enzyme containing three distinct functional domains and is localized in peroxisomes. The N- terminal part exhibits 3-hydroxyacyl-CoA dehydrogenase and 17β- hydroxysteroid dehydrogenase activity whereas the central part shows enoyl- CoA hydratase activity. The carboxy-terminal part of the protein has sterol- carrier-protein activity. The protein is widely expressed, however in several tissues like brain, uterus and lung its expression is limited to specific cells like Purkinje cells or luminal epithelium. The HSD17B4 gene consist of 24 exons and 23 introns with classical intron-exon junctions spanning more than 100 kbp. The importance of the HSD17B4 protein is stressed by the identification of patients with severe clinical abnormalities due to mutations in the HSD17B4 gene. We have now checked the consequences of one frequent mutation, G16 S, which results in inactivation of the enzyme due to loss of interaction with NAD+.SCOPUS: cp.jinfo:eu-repo/semantics/publishe
    corecore