11 research outputs found

    Phase transitions of regular Schwarzschild-Anti-deSitter black holes

    Full text link
    We study a solution of the Einstein's equations generated by a self-gravitating, anisotropic, static, non-singular matter fluid. The resulting Schwarzschild like solution is regular and accounts for smearing effects of noncommutative fluctuations of the geometry. We call this solution regular Schwarzschild spacetime. In the presence of an Anti-deSitter cosmological term, the regularized metric offers an extension of the Hawking-Page transition into a van der Waals-like phase diagram. Specifically the regular Schwarzschild-Anti-deSitter geometry undergoes a first order small/large black hole transition similar to the liquid/gas transition of a real fluid. In the present analysis we have considered the cosmological constant as a dynamical quantity and its variation is included in the first law of black hole thermodynamics.Comment: 6 pages. Contribution to the Proceedings of the Karl Schwarzschild Meeting (Frankfurt, July 22-26, 2013

    Charged black holes in Einsteinian cubic gravity and nonuniqueness

    Get PDF
    Black holes are the simplest objects in the universe. They correspond to extreme deformations of spacetime geometry, and can exist even devoid of matter. In general relativity, (electro)vacuum black holes are uniquely determined by their mass, charge and angular momentum. This feature follows from a uniqueness theorem, which can be evaded if one considers higher dimensions or matter fields coupled to gravity. Here we find that Einsteinian cubic gravity, a well-motivated modification of Einstein gravity that includes third-order curvature corrections in accordance with low-energy effective theory expectations, admits black hole solutions with charge greater than mass, when minimally coupled to a Maxwell field. Moreover, we find that, in this regime, there can be two asymptotically flat black holes with the same charge and mass, posing the first example of vacuum black hole nonuniqueness in four dimensions that is free from pathologies. Examination of these black hole's thermodynamics reveals that when two branches coexist only the larger black hole is thermodynamically stable, while the smaller branch has negative specific heat. Einsteinian cubic gravity unveils two further surprising features. The charged black holes do not possess an inner horizon, in contrast with the usual Reissner-Nordstr\"om spacetime, thus avoiding the need to resort to strong cosmic censorship to uphold determinism. In addition to black holes, there exists a one-parameter family of naked singularity spacetimes sharing the same mass and charge as the former, but not continuously connected with them. These naked singularities exist in the under-extremal regime, being present even in pure (uncharged) Einsteinian cubic gravity.Comment: 8 pages, 6 figures; v2: matches published version, slightly expanded introduction, perturbative analysis moved from appendix to main text, added references, results unchange

    Quantum BTZ black hole

    Get PDF
    We study a holographic construction of quantum rotating BTZ black holes that incorporates the exact backreaction from strongly coupled quantum conformal fields. It is based on an exact four-dimensional solution for a black hole localized on a brane in AdS4, first discussed some years ago but never fully investigated in this manner. Besides quantum CFT effects and their backreaction, we also investigate the role of higher-curvature corrections in the effective three-dimensional theory. We obtain the quantum-corrected geometry and the renormalized stress tensor. We show that the quantum black hole entropy, which includes the entanglement of the fields outside the horizon, satisfies the first law of thermodynamics exactly, even in the presence of backreaction and with higher-curvature corrections, while the Bekenstein-Hawking-Wald entropy does not. This result, which involves a rather non-trivial bulk calculation, shows the consistency of the holographic interpretation of braneworlds. We compare our renormalized stress tensor to results derived for free conformal fields, and for a previous holographic construction without backreaction effects, which is shown to be a limit of the solutions in this article

    Gauge-gravity duality, phase transition of nuclear matter, beyond the Einstein gravity limit

    No full text
    In den vergangen Jahren wurde erkannt, dass eine Quantenfeldtheorie (QFT) namens Quantenchromodynamik (QCD) die richtige Theorie der starken Wechselwirkungen ist. QCD beschreibt erfolgreich die starken Wechselwirkungen, die Quarks zu Nukleonen und Nukleonen zu Atomkernen zusammenbinden. Jedoch ist die theoretische Beschreibung vieler Phänomene der starken Wechselwirkung aufgrund des starken Kopplungsverhaltens bei niedrigen Energien schwierig. Stoßexperimente mit Schwerionen sind ein möglicher Weg, um die charakteristischen Phänomene und Eigenschaften der QCD-Materie zu untersuchen. In Stoßexperimenten mit Schwerionen werden schwere (d.h. große) Atomkerne aufeinander geschossen, beispielsweise Gold (am RHIC) oder Blei (am CERN, LHC), mit einer ultrarelativistischen Energie √s im Schwerpunktsystem. Auf diese Art ist es möglich, eine große Menge von Materie mit hoher Energiedichte hervorzubringen. Das Ziel von Schwerionenkollisionen ist die Erzeugung und Charakterisierung einer makroskopischen Phase von freien Quarks und Gluonen im lokalen thermischen Gleichgewicht. Ein solcher Aggregatzustand kann neue Informationen über das QCD-Phasendiagramm und den QCD-Phasenübergang liefern. Man nimmt an, dass ein solcher Übergang stattfand, als sich die Materie des frühen Universums von einem Plasma aus Quarks und Gluonen (QGP) in ein Gas von Hadronen umwandelte..

    Extended thermodynamics and complexity in gravitational Chern-Simons theory

    No full text
    We study several aspects of the extended thermodynamics of BTZ black holes with thermodynamic mass M = αm + γ j ℓ and angular momentum J = αj + γℓm, for general values of the parameters (α, γ) ranging from regular (α = 1, γ = 0) to exotic (α = 0, γ = 1). We show that there exist two distinct behaviours for the black holes, one when α > γ (“mostly regular”), and the other when γ γ, but a maximum volume emerges for large J ≫ T when γ > α; consequently an exotic black hole of a given horizon circumference and temperature can exist in two distinct anti de Sitter backgrounds. We compute the reverse isoperimetric ratio, and study the Gibbs free energy and criticality conditions for each. Finally we investigate the complexity growth of these objects and find that they are all proportional to the complexity of the BTZ black hole. Somewhat surprisingly, purely exotic BTZ black holes have vanishing complexity growth

    Unruh thermal hadronization and the cosmological constant

    No full text
    We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz

    Holographic complexity of quantum black holes

    No full text
    International audienceWe analyze different holographic complexity proposals for black holes that include corrections from bulk quantum fields. The specific setup is the quantum BTZ black hole, which encompasses in an exact manner the effects of conformal fields with large central charge in the presence of the black hole, including the backreaction corrections to the BTZ metric. Our results show that Volume Complexity admits a consistent quantum expansion and correctly reproduces known limits. On the other hand, the generalized Action Complexity picks up large contributions from the singularity, which is modified due to quantum backreaction, with the result that Action Complexity does not reproduce the expected classical limit. Furthermore, we show that the doubly-holographic setup allows computing the complexity coming purely from quantum fields — a notion that has proven evasive in usual holographic setups. We find that in holographic induced-gravity scenarios the complexity of quantum fields in a black hole background vanishes to leading order in the gravitational strength of CFT effects

    Quantum signatures in nonlinear gravitational waves

    No full text
    The effective quantum field theory description of gravity, despite its non-renormalizability, allows for predictions beyond classical general relativity. As we enter the age of gravitational wave astronomy, an important and timely question is whether measurable quantum predictions that depart from classical gravity, analogous to quantum optics effects which cannot be explained by classical electrodynamics, can be found. In this work, we investigate quantum signatures in gravitational waves using tools from quantum optics. Squeezed-coherent gravitational waves, which can exhibit sub-Poissonian graviton statistics, can enhance or suppress the signal measured by an interferometer, a characteristic effect of quantum squeezing. Moreover, we show that Gaussian gravitational wave quantum states can be reconstructed from measurements over an ensemble of optical fields interacting with a single copy of the gravitational wave, thus opening the possibility of detecting quantum features of gravity beyond classical general relativity

    Can We Detect the Quantum Nature of Weak Gravitational Fields?

    No full text
    A theoretical framework for the quantization of gravity has been an elusive Holy Grail since the birth of quantum theory and general relativity. While generations of scientists have attempted solutions to this deep riddle, an alternative path built upon the idea that experimental evidence could determine whether gravity is quantized has been decades in the making. The possibility of an experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors. We review and investigate an important subset of phenomenological quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.Comment: Submitted to Universe, invited contribution to the topical issue "Probing Quantum Gravity.
    corecore