125 research outputs found

    Low- versus Mid-frequency Raman Spectroscopy for in Situ Analysis of Crystallization in Slurries

    Get PDF
    Slurry studies are useful for exhaustive polymorph and solid-state stability screening of drug compounds. Raman spectroscopy is convenient for monitoring crystallization in such slurries, as the measurements can be performed in situ even in aqueous environments. While the mid-frequency region (400-4000 cm(-1)) is dominated by intramolecular vibrations and has traditionally been used for such studies, the low-frequency spectral region (Peer reviewe

    Surface stabilization and dissolution rate improvement of amorphous compacts with thin polymer coatings: can we have it all?

    Get PDF
    The distinction between surface and bulk crystallization of amorphous pharmaceuticals, as well as the importance of surface crystallization for pharmaceutical performance, is becoming increasingly evident. An emerging strategy in stabilizing the amorphous drug form is to utilize thin coatings at the surface. While the physical stability of systems coated with pharmaceutical polymers has recently been studied, the effect on dissolution performance as a function of storage time, as a further necessary step toward the success of these formulations, has not been previously studied. Furthermore, the effect of coating thickness has not been elucidated. This study investigated the effect of these polymer-coating parameters on the interplay between amorphous surface crystallization and drug dissolution for the first time. The study utilized simple tablet-like coated dosage forms, comprising a continuous amorphous drug core and thin polymer coating (hundreds of nanometers to a micrometer thick). Monitoring included analysis of both the solid-state of the model drug (with SEM, XRD, and ATR FTIR spectroscopy) and dissolution performance (and associated morphology and solid-state changes) after different storage times. Stabilization of the amorphous form (dependent on the coating thickness) and maintenance of early-stage intrinsic dissolution rates characteristic for the unaged amorphous drug were achieved. However, dissolution in the latter stages was likely inhibited by the presence of a polymer at the surface. Overall, this study introduced a versatile coated system for studying the dissolution of thin-coated amorphous dosage forms suitable for different drugs and coating agents. It demonstrated the importance of multiple factors that need to be taken into consideration when aiming to achieve both physical stability and improved release during the shelf life of amorphous formulations.Peer reviewe

    Understanding Dissolution and Crystallization with Imaging: A Surface Point of View

    Get PDF
    The tendency for crystallization during storage and administration is the most considerable hurdle for poorly water-soluble drugs formulated in the amorphous form. There is a need to better detect often subtle and complex surface crystallization phenomena and understand their influence on the critical quality attribute of dissolution. In this study, the interplay between surface crystallization of the amorphous form during storage and dissolution testing, and its influence on dissolution behavior, is analyzed for the first time with multimodal nonlinear optical imaging (coherent anti-Stokes Raman scattering (CARS) and sum frequency generation (SFG)). Complementary analyses are provided with scanning electron microscopy, X-ray diffraction and infrared and Raman spectroscopies. Amorphous indomethacin tablets were prepared and subjected to two different storage conditions (30 °C/23% RH and 30 °C/75% RH) for various durations and then dissolution testing using a channel flow-through device. Trace levels of surface crystallinity previously imaged with nonlinear optics after 1 or 2 days of storage did not significantly decrease dissolution and supersaturation compared to the freshly prepared amorphous tablets while more extensive crystallization after longer storage times did. Multimodal nonlinear optical imaging of the tablet surfaces after 15 min of dissolution revealed complex crystallization behavior that was affected by both storage condition and time, with up to four crystalline polymorphs simultaneously observed. In addition to the well-known α- and γ-forms, the less reported metastable ε- and η-forms were also observed, with the ε-form being widely observed in samples that had retained significant surface amorphousness during storage. This form was also prepared in the pure form and further characterized. Overall, this study demonstrates the potential value of nonlinear optical imaging, together with more established solid-state analysis methods, to understand complex surface crystallization behavior and its influence on drug dissolution during the development of amorphous drugs and dosage forms.Peer reviewe

    Cell-Nanoparticle Interactions at (Sub)-Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Anti-Stokes Raman Scattering

    Get PDF
    A wide variety of nanoparticles are playing an increasingly important role in drug delivery. Label-free imaging techniques are especially desirable to follow the cellular uptake and intracellular fate of nanoparticles. The combined correlative use of different techniques, each with unique advantages, facilitates more detailed investigation about such interactions. The synergistic use of correlative coherent anti-Stokes Raman scattering and electron microscopy (C-CARS-EM) imaging offers label-free, chemically-specific, and (sub)-nanometer spatial resolution for studying nanoparticle uptake into cells as demonstrated in the current study. Coherent anti-Stokes Raman scattering (CARS) microscopy offers chemically-specific (sub)micron spatial resolution imaging without fluorescent labels while transmission electron microscopy (TEM) offers (sub)-nanometer scale spatial resolution and thus visualization of precise nanoparticle localization at the sub-cellular level. This proof-of-concept imaging platform with unlabeled drug nanocrystals and macrophage cells revealed good colocalization between the CARS signal and electron dense nanocrystals in TEM images. The correlative TEM images revealed subcellular localization of nanocrystals inside membrane bound vesicles, showing multivesicular body (MVB)-like morphology typical for late endosomes (LEs), endolysosomes, and phagolysosomes. C-CARS-EM imaging has much potential to study the interactions between a wide range of nanoparticles and cells with high precision and confidence.Peer reviewe

    Biopharmaceutics of Topical Ophthalmic Suspensions: Importance of Viscosity and Particle Size in Ocular Absorption of Indomethacin

    Get PDF
    Eye drops of poorly soluble drugs are frequently formulated as suspensions. Bioavailability of suspended drug depends on the retention and dissolution of drug particles in the tear fluid, but these factors are still poorly understood. We investigated seven ocular indomethacin suspensions (experimental suspensions with two particle sizes and three viscosities, one commercial suspension) in physical and biological tests. The median particle size (d50) categories of the experimental suspensions were 0.37–1.33 and 3.12–3.50 µm and their viscosity levels were 1.3, 7.0, and 15 mPa·s. Smaller particle size facilitated ocular absorption of indomethacin to the aqueous humor of albino rabbits. In aqueous humor the AUC values of indomethacin suspensions with different particle sizes, but equal viscosity, differed over a 1.5 to 2.3-fold range. Higher viscosity increased ocular absorption 3.4–4.3-fold for the suspensions with similar particle sizes. Overall, the bioavailability range for the suspensions was about 8-fold. Instillation of larger particles resulted in higher tear fluid AUC values of total indomethacin (suspended and dissolved) as compared to application of smaller particles. Despite these tear fluid AUC values of total indomethacin, instillation of the larger particles resulted in smaller AUC levels of indomethacin in the aqueous humor. This suggests that the small particles yielded higher concentrations of dissolved indomethacin in the tear fluid, thereby leading to improved ocular bioavailability. This new conclusion was supported by ocular pharmacokinetic modeling. Both particle size and viscosity have a significant impact on drug concentrations in the tear fluid and ocular drug bioavailability from topical suspensions. Viscosity and particle size are the key players in the complex interplay of drug retention and dissolution in the tear fluid, thereby defining ocular drug absorption and bioequivalence of ocular suspensions

    Biopharmaceutics of Topical Ophthalmic Suspensions: Importance of Viscosity and Particle Size in Ocular Absorption of Indomethacin

    Get PDF
    Eye drops of poorly soluble drugs are frequently formulated as suspensions. Bioavailability of suspended drug depends on the retention and dissolution of drug particles in the tear fluid, but these factors are still poorly understood. We investigated seven ocular indomethacin suspensions (experimental suspensions with two particle sizes and three viscosities, one commercial suspension) in physical and biological tests. The median particle size (d50) categories of the experimental suspensions were 0.37–1.33 and 3.12–3.50 µm and their viscosity levels were 1.3, 7.0, and 15 mPa·s. Smaller particle size facilitated ocular absorption of indomethacin to the aqueous humor of albino rabbits. In aqueous humor the AUC values of indomethacin suspensions with different particle sizes, but equal viscosity, differed over a 1.5 to 2.3-fold range. Higher viscosity increased ocular absorption 3.4–4.3-fold for the suspensions with similar particle sizes. Overall, the bioavailability range for the suspensions was about 8-fold. Instillation of larger particles resulted in higher tear fluid AUC values of total indomethacin (suspended and dissolved) as compared to application of smaller particles. Despite these tear fluid AUC values of total indomethacin, instillation of the larger particles resulted in smaller AUC levels of indomethacin in the aqueous humor. This suggests that the small particles yielded higher concentrations of dissolved indomethacin in the tear fluid, thereby leading to improved ocular bioavailability. This new conclusion was supported by ocular pharmacokinetic modeling. Both particle size and viscosity have a significant impact on drug concentrations in the tear fluid and ocular drug bioavailability from topical suspensions. Viscosity and particle size are the key players in the complex interplay of drug retention and dissolution in the tear fluid, thereby defining ocular drug absorption and bioequivalence of ocular suspensions

    Tissue-specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark.

    Get PDF
    Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.peerReviewe

    Population Genetics of GYPB and Association Study between GYPB*S/s Polymorphism and Susceptibility to P. falciparum Infection in the Brazilian Amazon

    Get PDF
    Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB) and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil.Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases); and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls). The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection.GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02). Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity.Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this parasite is associated with the GPB S+ variant in this population
    • …
    corecore