6 research outputs found

    The path of dishonesty: identification of mental processes with electrical neuroimaging.

    Get PDF
    Much research finds that lying takes longer than truth-telling. Yet, the source of this response time difference remains elusive. Here, we assessed the spatiotemporal evolution of electrical brain activity during honesty and dishonesty in 150 participants using a sophisticated electrical neuroimaging approach-the microstate approach. This uniquely positioned us to identify and contrast the entire chain of mental processes involved during honesty and dishonesty. Specifically, we find that the response time difference is the result of an additional late-occurring mental process, unique to dishonest decisions, interrupting the antecedent mental processing. We suggest that this process inhibits the activation of the truth, thus permitting the execution of the lie. These results advance our understanding of dishonesty and clarify existing theories about the role of increased cognitive load. More broadly, we demonstrate the vast potential of our approach to illuminate the temporal organization of mental processes involved in decision-making

    Neural signatures of different behavioral types in fairness norm compliance

    Get PDF
    Fairness norm compliance is critical in any society. However, norm compliant behavior is very heterogeneous. Some people are reliably fair (voluntary compliers). Some are fair to avoid sanctions (sanction-based compliers), and some are reliably unfair (non-compliers). These types play divergent roles in society. However, they remain poorly understood. Here, we combined neural measures (resting electroencephalography and event-related potentials) and economic paradigms to better understand these types. We found that voluntary compliers are characterized by higher baseline activation in the right temporo-parietal junction, suggesting better social cognition capacity compared to sanction-based compliers and non-compliers. The latter two types are differentiated by (a) baseline activation in the dorso-lateral prefrontal cortex, a brain area known to be involved in self-control processes, and (b) event-related potentials in a classic self-control task. Both results suggest that sanction-based compliers have better self-control capacity than non-compliers. These findings improve our understanding of fairness norm compliance. Broadly, our findings suggest that established training techniques that boost self-control might help non-compliers adhere to fairness norms

    Theta resting EEG in TPJ/pSTS is associated with individual differences in the feeling of being looked at

    No full text
    Direct eye gaze is a powerful stimulus in social interactions, yet people vary considerably in the range of gaze lines that they accept as being direct (cone of direct gaze, CoDG). Here, we searched for a possible neural trait marker of these individual differences. We measured the width of the CoDG in 137 healthy participants and related their individual CoDG to their neural baseline activation as measured with resting electroencephalogram. Using a source-localization technique, we found that resting theta current density in the left temporo-parietal junction (TPJ) and adjacent posterior superior temporal sulcus (pSTS) was associated with the width of CoDG. Our findings suggest that the higher the baseline cortical activation in the left TPJ/pSTS, the wider the CoDG and thus the more liberal the individuals' judgments were in deciding whether a looker stimulus was making eye contact or not. This is a first demonstration of the neural signatures underlying individual differences in the feeling of being looked at

    Theta resting EEG in TPJ/pSTS is associated with individual differences in the feeling of being looked at

    Get PDF
    Direct eye gaze is a powerful stimulus in social interactions, yet people vary considerably in the range of gaze lines that they accept as being direct (cone of direct gaze, CoDG). Here, we searched for a possible neural trait marker of these individual differences. We measured the width of the CoDG in 137 healthy participants and related their individual CoDG to their neural baseline activation as measured with resting electroencephalogram. Using a source-localization technique, we found that resting theta current density in the left temporo-parietal junction (TPJ) and adjacent posterior superior temporal sulcus (pSTS) was associated with the width of CoDG. Our findings suggest that the higher the baseline cortical activation in the left TPJ/pSTS, the wider the CoDG and thus the more liberal the individuals’ judgments were in deciding whether a looker stimulus was making eye contact or not. This is a first demonstration of the neural signatures underlying individual differences in the feeling of being looked at
    corecore