422 research outputs found

    A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro

    Get PDF
    Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold

    Increasing confidence and changing behaviors in primary care providers engaged in genetic counselling.

    Get PDF
    BackgroundScreening and counseling for genetic conditions is an increasingly important part of primary care practice, particularly given the paucity of genetic counselors in the United States. However, primary care physicians (PCPs) often have an inadequate understanding of evidence-based screening; communication approaches that encourage shared decision-making; ethical, legal, and social implication (ELSI) issues related to screening for genetic mutations; and the basics of clinical genetics. This study explored whether an interactive, web-based genetics curriculum directed at PCPs in non-academic primary care settings was superior at changing practice knowledge, attitudes, and behaviors when compared to a traditional educational approach, particularly when discussing common genetic conditions.MethodsOne hundred twenty one PCPs in California and Pennsylvania physician practices were randomized to either an Intervention Group (IG) or Control Group (CG). IG physicians completed a 6 h interactive web-based curriculum covering communication skills, basics of genetic testing, risk assessment, ELSI issues and practice behaviors. CG physicians were provided with a traditional approach to Continuing Medical Education (CME) (clinical review articles) offering equivalent information.ResultsPCPs in the Intervention Group showed greater increases in knowledge compared to the Control Group. Intervention PCPs were also more satisfied with the educational materials, and more confident in their genetics knowledge and skills compared to those receiving traditional CME materials. Intervention PCPs felt that the web-based curriculum covered medical management, genetics, and ELSI issues significantly better than did the Control Group, and in comparison with traditional curricula. The Intervention Group felt the online tools offered several advantages, and engaged in better shared decision making with standardized patients, however, there was no difference in behavior change between groups with regard to increases in ELSI discussions between PCPs and patients.ConclusionWhile our intervention was deemed more enjoyable, demonstrated significant factual learning and retention, and increased shared decision making practices, there were few differences in behavior changes around ELSI discussions. Unfortunately, barriers to implementing behavior change in clinical genetics is not unique to our intervention. Perhaps the missing element is that busy physicians need systems-level support to engage in meaningful discussions around genetics issues. The next step in promoting active engagement between doctors and patients may be to put into place the tools needed for PCPs to easily access the materials they need at the point-of-care to engage in joint discussions around clinical genetics

    Nanomechanical investigation of soft biological cell adhesion using atomic force microscopy

    Get PDF
    Mechanical coupling between living cells is a complex process that is important for a variety of biological processes. In this study the effects of specific biochemical treatment on cell-to-cell adhesion and single cell mechanics were systematically investigated using atomic force microscopy (AFM) single cell force spectroscopy. Functionalised AFM tipless cantilevers were used for attaching single suspended cells that were brought in contact with substrate cells. Cell-to-cell adhesion parameters, such as maximum unbinding force (F max) and work or energy of detachment (W D), were extracted from the retraction force–displacement (F–d) curves. AFM indentation experiments were performed by indenting single cells with a spherical microbead attached to the cantilever. Hertzian contact model was applied to determine the elastic modulus (E) of single cells. Following treatment of the cells with neutralising antibody for epithelial (E)-cadherin, F max was increased by 25%, whereas W D decreased by 11% in response to a 43% increase in E. The results suggest that although the adhesion force between cells was increased after treatment, the energy of adhesion was decreased due to the reduced displacement separation as manifested by the loss of elastic deformation. Conclusively, changes in single cell mechanics are important underlying factors contributing to cell-to-cell adhesion and hence cytomechanical characterization is critical for cell adhesion measurements

    Do images of a personalised future body shape help with weight loss? A randomised controlled study

    Get PDF
    Background: This randomised controlled study evaluated a computer-generated future self-image as a personalised, visual motivational tool for weight loss in adults. Methods: One hundred and forty-five people (age 18–79 years) with a Body Mass Index (BMI) of at least 25 kg/m2 were randomised to receive a hard copy future self-image at recruitment (early image) or after 8 weeks (delayed image). Participants received general healthy lifestyle information at recruitment and were weighed at 4-weekly intervals for 24 weeks. The image was created using an iPad app called ‘Future Me’. A second randomisation at 16 weeks allocated either an additional future self-image or no additional image. Results: Seventy-four participants were allocated to receive their image at commencement, and 71 to the delayed-image group. Regarding to weight loss, the delayed-image group did consistently better in all analyses. Twenty-four recruits were deemed non-starters, comprising 15 (21%) in the delayed-image group and 9 (12%) in the early-image group (χ2(1) = 2.1, p = 0.15). At 24 weeks there was a significant change in weight overall (p \u3c 0.0001), and a difference in rate of change between groups (delayed-image group: −0.60 kg, early-image group: −0.42 kg, p = 0.01). Men lost weight faster than women. The group into which participants were allocated at week 16 (second image or not) appeared not to influence the outcome (p = 0.31). Analysis of all completers and withdrawals showed a strong trend over time (p \u3c 0.0001), and a difference in rate of change between groups (delayed-image: −0.50 kg, early-image: −0. 27 kg, p = 0.0008). Conclusion: One in five participants in the delayed-image group completing the 24-week intervention achieved a clinically significant weight loss, having received only future self-images and general lifestyle advice. Timing the provision of future self-images appears to be significant, and promising for future research to clarify their efficacy. Trial Registration: Australian Clinical Trials Registry, identifier: ACTRN12613000883718. Registered on 8 August 2013

    MicroRNA expression profiles in human cancer cells after ionizing radiation

    Get PDF
    Introduction: MicroRNAs are regulators of central cellular processes and are implicated in the pathogenesis and prognosis of human cancers. MicroRNAs also modulate responses to anti-cancer therapy. In the context of radiation oncology microRNAs were found to modulate cell death and proliferation after irradiation. However, changes in microRNA expression profiles in response to irradiation have not been comprehensively analyzed so far. The present study's intend is to present a broad screen of changes in microRNA expression following irradiation of different malignant cell lines. Materials and methods: 1100 microRNAs (Sanger miRBase release version 14.0) were analyzed in six malignant cell lines following irradiation with clinically relevant doses of 2.0 Gy. MicroRNA levels 6 hours after irradiation were compared to microRNA levels in non-irradiated cells using the "Geniom Biochip MPEA homo sapiens". Results: Hierarchical clustering analysis revealed a pattern, which significantly (p = 0.014) discerned irradiated from non-irradiated cells. The expression levels of a number of microRNAs known to be involved in the regulation of cellular processes like apoptosis, proliferation, invasion, local immune response and radioresistance (e. g. miR-1285, miR-24-1, miR-151-5p, let-7i) displayed 2 - 3-fold changes after irradiation. Moreover, several microRNAs previously not known to be radiation-responsive were discovered. Conclusion: Ionizing radiation induced significant changes in microRNA expression profiles in 3 glioma and 3 squamous cell carcinoma cell lines. The functional relevance of these changes is not addressed but should by analyzed by future work especially focusing on clinically relevant endpoints like radiation induced cell death, proliferation, migration and metastasis

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Atrial arrhythmogenesis in wild-type and Scn5a+/Δ murine hearts modelling LQT3 syndrome

    Get PDF
    Long QT(3) (LQT3) syndrome is associated with abnormal repolarisation kinetics, prolonged action potential durations (APD) and QT intervals and may lead to life-threatening ventricular arrhythmias. However, there have been few physiological studies of its effects on atrial electrophysiology. Programmed electrical stimulation and burst pacing induced atrial arrhythmic episodes in 16 out of 16 (16/16) wild-type (WT) and 7/16 genetically modified Scn5a+/Δ (KPQ) Langendorff-perfused murine hearts modelling LQT3 (P < 0.001 for both), and in 14/16 WT and 1/16 KPQ hearts (P < 0.001 for both; Fisher’s exact test), respectively. The arrhythmogenic WT hearts had significantly larger positive critical intervals (CI), given by the difference between atrial effective refractory periods (AERPs) and action potential durations at 90% recovery (APD90), compared to KPQ hearts (8.1 and 3.2 ms, respectively, P < 0.001). Flecainide prevented atrial arrhythmias in all arrhythmogenic WT (P < 0.001) and KPQ hearts (P < 0.05). It prolonged the AERP to a larger extent than it did the APD90 in both WT and KPQ groups, giving negative CIs. Quinidine similarly exerted anti-arrhythmic effects, prolonged AERP over corresponding APD90 in both WT and KPQ groups. These findings, thus, demonstrate, for the first time, inhibitory effects of the KPQ mutation on atrial arrhythmogenesis and its modification by flecainide and quinidine. They attribute these findings to differences in the CI between WT and mutant hearts, in the presence or absence of these drugs. Thus, prolongation of APD90 over AERP gave positive CI values and increased atrial arrhythmogenicity whereas lengthening of AERP over APD90 reduced such CI values and produced the opposite effect

    Stability and change in health behaviours as predictors for disability pension: a prospective cohort study of Swedish twins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stability or changes of health behaviours have not been studied in association with incidence of disability pension (DP). The aims were to (1) investigate if stability or changes in health behaviours predict DP due to musculoskeletal diagnosis (MSD), (2) to evaluate if an association exists for DP in general, and (3) after taking familial confounding into account.</p> <p>Methods</p> <p>The study sample was 16,713 like-sexed twin individuals born in Sweden between 1935-1958 (6195 complete twin pairs) who had participated in two surveys 25 years apart, were alive, and not pensioned at the time of the latest survey. Cox proportional hazards analysis was used to assess the associations (hazard ratios (HR) with 95% confidence intervals (CI)) between stability and change in health behaviours (physical activity, tobacco and alcohol use, body mass index (BMI)), and number of pain locations collected at two time points 25 years apart and the incidence of DP until 2008.</p> <p>Results</p> <p>During the follow-up, 1843 (11%) individuals were granted DP with 747 of these due to MSD. A higher proportion of women were granted DP than men. Increase in BMI and stable use of tobacco products were predictors for DP due to MSD (HR 1.21-1.48) and DP in general (HR 1.10-1.41). The stability in the frequency of physical activity and increased frequency of physical activity were protective factors for DP due to MSD only when accounting for familial confounding. However, the number of pain locations (stability, increase, or decrease) was the strongest predictor for future DP due to MSD (HR 3.69, CI 2.99-4.56) and DP in general (HR 2.15, CI 1.92-2.42). In discordant pair analysis, the HRs for pain were lower, indicating potential familial confounding.</p> <p>Conclusions</p> <p>Health behaviours in adulthood, including an increase in pain locations were associated with the incidence of DP. The association between physical activity and DP was especially related to adulthood choices or habits, i.e., the individual decision about frequency of exercising. Thus, it is important to e.g. increase public awareness of the potential beneficial effects of exercise throughout life to avoid permanent exclusion from the labour market for medical reasons.</p

    Changes in socioeconomic inequality in Indonesian children's cognitive function from 2000 to 2007: a decomposition analysis

    Get PDF
    Background: Measuring social inequalities in health is common; however, research examining inequalities in child cognitive function is more limited. We investigated household expenditure-related inequality in children’s cognitive function in Indonesia in 2000 and 2007, the contributors to inequality in both time periods, and changes in the contributors to cognitive function inequalities between the periods. Methods: Data from the 2000 and 2007 round of the Indonesian Family Life Survey (IFLS) were used. Study participants were children aged 7–14 years (n = 6179 and n = 6680 in 2000 and 2007, respectively). The relative concentration index (RCI) was used to measure the magnitude of inequality. Contribution of various contributors to inequality was estimated by decomposing the concentration index in 2000 and 2007. Oaxaca-type decomposition was used to estimate changes in contributors to inequality between 2000 and 2007. Results: Expenditure inequality decreased by 45% from an RCI = 0.29 (95% CI 0.22 to 0.36) in 2000 to 0.16 (95% CI 0.13 to 0.20) in 2007 but the burden of poorer cognitive function was higher among the disadvantaged in both years. The largest contributors to inequality in child cognitive function were inequalities in per capita expenditure, use of improved sanitation and maternal high school attendance. Changes in maternal high school participation (27%), use of improved sanitation (25%) and per capita expenditures (18%) were largely responsible for the decreasing inequality in children’s cognitive function between 2000 and 2007. Conclusions: Government policy to increase basic education coverage for women along with economic growth may have influenced gains in children’s cognitive function and reductions in inequalities in Indonesia.Amelia Maika, Murthy N. Mittinty, Sally Brinkman, Sam Harper, Elan Satriawan, John W. Lync

    Adult Romantic Attachment, Negative Emotionality, and Depressive Symptoms in Middle Aged Men: A Multivariate Genetic Analysis

    Get PDF
    Adult romantic attachment styles reflect ways of relating in close relationships and are associated with depression and negative emotionality. We estimated the extent to which dimensions of romantic attachment and negative emotionality share genetic or environmental risk factors in 1,237 middle-aged men in the Vietnam Era Twin Study of Aging (VETSA). A common genetic factor largely explained the covariance between attachment-related anxiety, attachment-related avoidance, depressive symptoms, and two measures of negative emotionality: Stress-Reaction (anxiety), and Alienation. Multivariate results supported genetic and environmental differences in attachment. Attachment-related anxiety and attachment-related avoidance were each influenced by additional genetic factors not shared with other measures; the genetic correlation between the attachment measure-specific genetic factors was 0.41, indicating some, but not complete overlap of genetic factors. Genetically informative longitudinal studies on attachment relationship dimensions can help to illuminate the role of relationship-based risk factors in healthy aging
    corecore