20 research outputs found

    Hypoxia Induces VEGF-C Expression in Metastatic Tumor Cells via a HIF-1α-Independent Translation-Mediated Mechanism

    Get PDF
    SummaryVarious tumors metastasize via lymph vessels and lymph nodes to distant organs. Even though tumors are hypoxic, the mechanisms of how hypoxia regulates lymphangiogenesis remain poorly characterized. Here, we show that hypoxia reduced vascular endothelial growth factor C (VEGF-C) transcription and cap-dependent translation via the upregulation of hypophosphorylated 4E-binding protein 1 (4E-BP1). However, initiation of VEGF-C translation was induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. IRES-dependent VEGF-C translation was independent of hypoxia-inducible factor 1α (HIF-1α) signaling. Notably, the VEGF-C IRES activity was higher in metastasizing tumor cells in lymph nodes than in primary tumors, most likely because lymph vessels in these lymph nodes were severely hypoxic. Overall, this transcription-independent but translation-dependent upregulation of VEGF-C in hypoxia stimulates lymphangiogenesis in tumors and lymph nodes and may contribute to lymphatic metastasis

    Translational regulation during the differentiation and cellular stress

    No full text
    La cellule est susceptible de modifier l'expression de ces gènes en fonction de son environnement. Dans les cellules eucaryotes, la régulation de l'expression de ces gènes se présente dans plusieurs étapes. Cette régulation peut intervenir dès la transcription de l'ADN jusqu'au devenir des transcrits. La régulation post-transcriptionnelle tient un rôle déterminant dans la synthèse protéique. Elle regroupe l'ensemble des contrôles qui s'exercent sur les transcrits. Cette régulation est induite en réponse à différents stimuli comme la différenciation ou lors de stress cellulaires. En situation de stress, la traduction canonique dépendante de la coiffe est bloquée, à l'exception de certains ARNm essentiels pour assurer la survie des cellules. De ce fait, les cellules mettent en place un mécanisme alternatif afin de continuer la traduction. Un des mécanismes de traduction, implique le site d'entrée interne du ribosome ou IRES (Internal Ribosome Entry Site). L'IRES est une séquence en structure secondaire dans la partie 5' non-traduite de certains ARNm. Il existe des facteurs responsables de leur activation appelés ITAF ou IRES-transacting factor, permettant le recrutement des ribosomes pour initier la traduction. Les protéines pouvant se lier aux ARN sont les acteurs majeurs de l'activation des IRES. Mon travail de thèse est d'étudier les régulateurs post-transcriptionnels en réponse à différents stimuli par le biais de la traduction IRES-dépendante. Dans la première partie de mon projet, nous avons montré la régulation de la traduction via l'activation de l'IRES du FGF1 et ce de manière promoteur-dépendante au cours de la différenciation des myoblastes. Grâce à la technique de résonance plasmonique de surface (SPR) nous avons découvert deux protéines p54nrb/NONO et hnRNPM en tant qu'ITAF capables de former un complexe pour activer l'IRES du FGF1 durant la différenciation des myoblastes. Dans la deuxième partie de ma thèse, nous avons démontré l'existence de l'IRES du VEGFD durant un choc thermique dans les cellules cancéreuses. Nous avons aussi découvert que cette activation est médiée par un ITAF qui est la nucléoline, jamais démontrée auparavant comme ITAF de l'IRES du VEGFD. D'après nos résultats, le stress thermique induit la délocalisation de la nucléoline du noyau vers le cytoplasme pour changer la conformation de l'IRES du VEGFD afin de continuer sa traduction. Dans la troisième partie de mon projet, j'ai étudié de manière générale la régulation des gènes angiogéniques et lymphangiogéniques. L'ensemble des données montre que ces gènes sont majoritairement régulés au niveau traductionnel dans les cardiomyocytes en condition hypoxique. En étudiant les IRES angiogéniques et lymphangiogéniques, nos résultats montrent l'activation de ces IRES à différents temps au cours de l'hypoxie précoce. Dans la même condition, nous avons découvert la protéine vasohibin-1 comme ITAF hypoxique et spécifique de l'IRES du FGF1 dans les cardiomyocytes. En conclusion, nous avons découvert différents ITAF spécifiques à un IRES et en fonction du stress. P54nrb/NONO, hnRNPM sont des ITAF de l'IRES du FGF1 durant la différenciation cellulaire et la vasohibine-1 en hypoxie dans les cardiomyocytes. La nucléoline permet d'activer un IRES du VEGFD en réponse au choc thermique.In cell, gene expression can be modified depending on the cellular microenvironment. Regulation of gene expression occurs at different levels, ranging from the transcription of the DNA to the mRNA. Among the post- transcriptional regulation, the control of translation plays a crucial role. In particular, the translational regulation occurs in response to different stimuli such as cell differentiation or cell stress. In stress condition, the canonical cap-dependent translation is blocked, excepted some mRNAs that are translated by alternative mechanisms. One of these mechanisms involves the structural elements of the mRNAs, the IRES (Internal Ribosome Entry Sites). The IRES activation involves some factors called ITAFs (IRES trans-acting factors), which allow the internal recruitement of ribosomes to initiate translation. My thesis is to study the mechanisms of IRES-dependent translation regulation in response to different stimuli, and to identify ITAFs responsible for this regulation. In the first part of my project, we have shown that the translation controlled by the FGF1 mRNA IRES is activated. This activation depends on its own promoter during the early phase of murine myoblast differentiation. Through biomolecular interaction analysis technology by surface plasmon resonance coupled to mass spectrometry (BIA/MS), we identified two proteins, p54nrb/NONO and hnRNPM bound both to the IRES and the FGF1gene promoter. These two proteins are both ITAFs activators of IRES and activators of FGF1 promoter transcription, resulting in a coupling of transcription and translation responsible for the induction of the FGF1 expression during myoblast differentiation. In the second part of this thesis, we demonstrated the existence of an IRES within the VEGFD mRNA. This IRES is activated by heat shock in mammary murine carcinoma. BIA/MS technology has enabled us to identify nucleolin as ITAF responsible for this activation. SHAPE experiments revealed the presence of two alternative structures of VEGFD IRES. According to our results, the heat shock induced the relocation of nucleolin from the nucleus to the cytoplasm, suggesting its binding to the mRNA in the cytoplasm could stabilize the conformation of the mRNA VEGFD IRES and activate its translation. The third part of my thesis focused on translational regulation of lymphangiogenic and angiogenic genes into cardiomyocytes in hypoxic conditions. The data obtained by the semi-global approach Fluidigm indicate that only few genes are induced at the transcriptional level, while the majority of them, especially those which have the mRNA IRES, are activated at translational level in hypoxic cardiomyocytes. I have also shown that the mRNA IRES of factors (lymph)angiogenic VEGF and FGF are activated during early hypoxia. Through Technology BIA/MS, I identified a specific hypoxic ITAF of FGF1 IRES in cardiomyocytes: it is the vasohibin - 1 protein involved in angiogenesis and stress tolerance. So, my thesis has enabled to make progress in understanding the mechanisms of IRES-dependent translation regulation. In addition, I have demonstrated that in cardiomyocytes during hypoxia the gene expression is surprisingly regulated at translational level. My work led to the identification of several molecular actors responsible for the regulation of mRNA (lymph)angiogenic factors translation, which could play a key role in ischemic pathologies and in cancer, and provide new targets therapeutic

    Régulateurs traductionnels de l'expression génique de la différenciation et du stress cellulaire

    Get PDF
    In cell, gene expression can be modified depending on the cellular microenvironment. Regulation of gene expression occurs at different levels, ranging from the transcription of the DNA to the mRNA. Among the post- transcriptional regulation, the control of translation plays a crucial role. In particular, the translational regulation occurs in response to different stimuli such as cell differentiation or cell stress. In stress condition, the canonical cap-dependent translation is blocked, excepted some mRNAs that are translated by alternative mechanisms. One of these mechanisms involves the structural elements of the mRNAs, the IRES (Internal Ribosome Entry Sites). The IRES activation involves some factors called ITAFs (IRES trans-acting factors), which allow the internal recruitement of ribosomes to initiate translation. My thesis is to study the mechanisms of IRES-dependent translation regulation in response to different stimuli, and to identify ITAFs responsible for this regulation. In the first part of my project, we have shown that the translation controlled by the FGF1 mRNA IRES is activated. This activation depends on its own promoter during the early phase of murine myoblast differentiation. Through biomolecular interaction analysis technology by surface plasmon resonance coupled to mass spectrometry (BIA/MS), we identified two proteins, p54nrb/NONO and hnRNPM bound both to the IRES and the FGF1gene promoter. These two proteins are both ITAFs activators of IRES and activators of FGF1 promoter transcription, resulting in a coupling of transcription and translation responsible for the induction of the FGF1 expression during myoblast differentiation. In the second part of this thesis, we demonstrated the existence of an IRES within the VEGFD mRNA. This IRES is activated by heat shock in mammary murine carcinoma. BIA/MS technology has enabled us to identify nucleolin as ITAF responsible for this activation. SHAPE experiments revealed the presence of two alternative structures of VEGFD IRES. According to our results, the heat shock induced the relocation of nucleolin from the nucleus to the cytoplasm, suggesting its binding to the mRNA in the cytoplasm could stabilize the conformation of the mRNA VEGFD IRES and activate its translation. The third part of my thesis focused on translational regulation of lymphangiogenic and angiogenic genes into cardiomyocytes in hypoxic conditions. The data obtained by the semi-global approach Fluidigm indicate that only few genes are induced at the transcriptional level, while the majority of them, especially those which have the mRNA IRES, are activated at translational level in hypoxic cardiomyocytes. I have also shown that the mRNA IRES of factors (lymph)angiogenic VEGF and FGF are activated during early hypoxia. Through Technology BIA/MS, I identified a specific hypoxic ITAF of FGF1 IRES in cardiomyocytes: it is the vasohibin - 1 protein involved in angiogenesis and stress tolerance. So, my thesis has enabled to make progress in understanding the mechanisms of IRES-dependent translation regulation. In addition, I have demonstrated that in cardiomyocytes during hypoxia the gene expression is surprisingly regulated at translational level. My work led to the identification of several molecular actors responsible for the regulation of mRNA (lymph)angiogenic factors translation, which could play a key role in ischemic pathologies and in cancer, and provide new targets therapeutic.La cellule est susceptible de modifier l'expression de ces gènes en fonction de son environnement. Dans les cellules eucaryotes, la régulation de l'expression de ces gènes se présente dans plusieurs étapes. Cette régulation peut intervenir dès la transcription de l'ADN jusqu'au devenir des transcrits. La régulation post-transcriptionnelle tient un rôle déterminant dans la synthèse protéique. Elle regroupe l'ensemble des contrôles qui s'exercent sur les transcrits. Cette régulation est induite en réponse à différents stimuli comme la différenciation ou lors de stress cellulaires. En situation de stress, la traduction canonique dépendante de la coiffe est bloquée, à l'exception de certains ARNm essentiels pour assurer la survie des cellules. De ce fait, les cellules mettent en place un mécanisme alternatif afin de continuer la traduction. Un des mécanismes de traduction, implique le site d'entrée interne du ribosome ou IRES (Internal Ribosome Entry Site). L'IRES est une séquence en structure secondaire dans la partie 5' non-traduite de certains ARNm. Il existe des facteurs responsables de leur activation appelés ITAF ou IRES-transacting factor, permettant le recrutement des ribosomes pour initier la traduction. Les protéines pouvant se lier aux ARN sont les acteurs majeurs de l'activation des IRES. Mon travail de thèse est d'étudier les régulateurs post-transcriptionnels en réponse à différents stimuli par le biais de la traduction IRES-dépendante. Dans la première partie de mon projet, nous avons montré la régulation de la traduction via l'activation de l'IRES du FGF1 et ce de manière promoteur-dépendante au cours de la différenciation des myoblastes. Grâce à la technique de résonance plasmonique de surface (SPR) nous avons découvert deux protéines p54nrb/NONO et hnRNPM en tant qu'ITAF capables de former un complexe pour activer l'IRES du FGF1 durant la différenciation des myoblastes. Dans la deuxième partie de ma thèse, nous avons démontré l'existence de l'IRES du VEGFD durant un choc thermique dans les cellules cancéreuses. Nous avons aussi découvert que cette activation est médiée par un ITAF qui est la nucléoline, jamais démontrée auparavant comme ITAF de l'IRES du VEGFD. D'après nos résultats, le stress thermique induit la délocalisation de la nucléoline du noyau vers le cytoplasme pour changer la conformation de l'IRES du VEGFD afin de continuer sa traduction. Dans la troisième partie de mon projet, j'ai étudié de manière générale la régulation des gènes angiogéniques et lymphangiogéniques. L'ensemble des données montre que ces gènes sont majoritairement régulés au niveau traductionnel dans les cardiomyocytes en condition hypoxique. En étudiant les IRES angiogéniques et lymphangiogéniques, nos résultats montrent l'activation de ces IRES à différents temps au cours de l'hypoxie précoce. Dans la même condition, nous avons découvert la protéine vasohibin-1 comme ITAF hypoxique et spécifique de l'IRES du FGF1 dans les cardiomyocytes. En conclusion, nous avons découvert différents ITAF spécifiques à un IRES et en fonction du stress. P54nrb/NONO, hnRNPM sont des ITAF de l'IRES du FGF1 durant la différenciation cellulaire et la vasohibine-1 en hypoxie dans les cardiomyocytes. La nucléoline permet d'activer un IRES du VEGFD en réponse au choc thermique

    Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis.

    Full text link
    Hypoxia is known to be a major factor in the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by the vascular endothelial family of growth factors - the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of the lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated by hypoxia at either transcriptional or translational levels. In contrast to strong induction of DNA transcription by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of mRNA and downregulation of protein synthesis. Here, we describe how initiation of translation of VEGF mRNA is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implications of the lymphatic vasculature for metastatic dissemination, it is crucial to understand the molecular regulation of lymphangiogenic growth factors by hypoxia to obtain new insights into cancer therapy

    Internal ribosome entry site-based vectors for combined gene therapy.

    Full text link
    peer reviewedGene therapy appears as a promising strategy to treat incurable diseases. In particular, combined gene therapy has shown improved therapeutic efficiency. Internal ribosome entry sites (IRESs), RNA elements naturally present in the 5' untranslated regions of a few mRNAs, constitute a powerful tool to co-express several genes of interest. IRESs are translational enhancers allowing the translational machinery to start protein synthesis by internal initiation. This feature allowed the design of multi-cistronic vectors expressing several genes from a single mRNA. IRESs exhibit tissue specificity, and drive translation in stress conditions when the global cell translation is blocked, which renders them useful for gene transfer in hypoxic conditions occurring in ischemic diseases and cancer. IRES-based viral and non viral vectors have been used successfully in preclinical and clinical assays of combined gene therapy and resulted in therapeutic benefits for various pathologies including cancers, cardiovascular diseases and degenerative diseases

    IRES Trans-Acting Factors, Key Actors of the Stress Response

    No full text
    The cellular stress response corresponds to the molecular changes that a cell undergoes in response to various environmental stimuli. It induces drastic changes in the regulation of gene expression at transcriptional and posttranscriptional levels. Actually, translation is strongly affected with a blockade of the classical cap-dependent mechanism, whereas alternative mechanisms are activated to support the translation of specific mRNAs. A major mechanism involved in stress-activated translation is the internal ribosome entry site (IRES)-driven initiation. IRESs, first discovered in viral mRNAs, are present in cellular mRNAs coding for master regulators of cell responses, whose expression must be tightly controlled. IRESs allow the translation of these mRNAs in response to different stresses, including DNA damage, amino-acid starvation, hypoxia or endoplasmic reticulum stress, as well as to physiological stimuli such as cell differentiation or synapse network formation. Most IRESs are regulated by IRES trans-acting factor (ITAFs), exerting their action by at least nine different mechanisms. This review presents the history of viral and cellular IRES discovery as well as an update of the reported ITAFs regulating cellular mRNA translation and of their different mechanisms of action. The impact of ITAFs on the coordinated expression of mRNA families and consequences in cell physiology and diseases are also highlighted

    Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis.

    Full text link
    The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. (c)2016 AACR

    Promoter-Dependent Translation Controlled by p54nrb and hnRNPM during Myoblast Differentiation.

    No full text
    Fibroblast growth factor 1 (FGF1) is induced during myoblast differentiation at both transcriptional and translational levels. Here, we identify hnRNPM and p54nrb/NONO present in protein complexes bound to the FGF1 promoter and to the mRNA internal ribosome entry site (IRES). Knockdown or overexpression of these proteins indicate that they cooperate in activating IRES-dependent translation during myoblast differentiation, in a promoter-dependent manner. Importantly, mRNA transfection and promoter deletion experiments clearly demonstrate the impact of the FGF1 promoter on the activation of IRES-dependent translation via p54nrb and hnRNPM. Accordingly, knockdown of either p54 or hnRNPM also blocks endogenous FGF1 induction and myotube formation, demonstrating the physiological relevance of this mechanism and the role of these two proteins in myogenesis. Our study demonstrates the cooperative function of hnRNPM and p54nrb as regulators of IRES-dependent translation and indicates the involvement of a promoter-dependent mechanism
    corecore