1,022 research outputs found

    Retrieval of CO from SCIAMACHY onboard ENVISAT: detection of strongly polluted areas and seasonal patterns in global CO abundances

    Get PDF
    SCIAMACHY onboard the European environmental research satellite ENVISAT is an UV/visible/near-infrared spectrometer providing 3 near infrared channels covering wavelengths from 1-1.75 ”m, 1.94-2.04 ”m and 2.26-2.38 ”m with moderate spectral resolution (0.22-1.5nm). From their structured absorption in these spectral regions, we can quantitatively determine the total column densities of the greenhouse gases CO_2, CH_4, N_2O and H_2O as well as of CO. A modified DOAS algorithm based on optimal estimation (IMAP-DOAS) has been developed at the University of Heidelberg to account for the peculiarities of these absorbers. CO is a relatively weak absorber whose spectral signature is overlapped by strong CH_4 and H_2O absorptions. Hence, retrieval of CO from SCIAMACHY spectra (within 2.26-2.38 ”m) is a challenging task. Therefore, the calibration of the raw spectra with respect to dark current issues and nonlinearity were analysed in detail and substantially improved to enable reasonable retrieval of CO. This paper focusses on first results of the CO retrieval where various sources like biomass burning events and their seasonal variability can be clearly identified

    Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH_4 and CO_2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Get PDF
    In the past, differential optical absorption spectroscopy (DOAS) has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH_4, CO_2, or N_2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region

    Satellite Chartography of Atmospheric Methane and carbon monoxide from SCIAMACHY onboard ENVISAT

    Get PDF
    The UV/Vis/near infrared spectrometer SCIAMACHY on board the European ENVISAT satellite enables total column retrieval of atmospheric methane with high sensitivity to the lower troposphere. The vertical column density of methane is converted to column averaged mixing ratio by using carbon dioxide retrievals as proxy for the probed atmospheric column. For this purpose, we apply concurrent total column measurements of CO_2 in combination with modeled column-averaged CO_2 mixing ratios. Possible systematic errors are discussed in detail while the precision error is 1.8% on average. This paper focuses on methane retrievals from January 2003 through December 2004. The measurements with global coverage over continents are compared with model results from the chemistry–transport model TM4. In the retrievals, the north-south gradient as well as regions with enhanced methane levels can be clearly identified. The highest abundances are found in the Red Basin of China, followed by northern South America, the Gangetic plains of India and central parts of Africa. Especially the abundances in northern South America and the Red Basin are generally higher than modeled. Further, we present the seasonal variations within the investigated time period. Peak values in Asia due to rice emissions are observed from August through October. We expand earlier investigations that suggest underestimated emissions in the tropics. It is shown that these underestimations show a seasonal behavior that peaks from August through December. The global measurements may be used for inverse modeling and are thus an important step towards better quantification of the methane budget

    Assessing Methane Emissions from Global Space-Borne Observations

    Get PDF
    In the past two centuries, atmospheric methane has more than doubled and now constitutes 20% of the anthropogenic climate forcing by greenhouse gases. Yet its sources are not well quantified, introducing uncertainties in its global budget. We retrieved the global methane distribution by using spaceborne near-infrared absorption spectroscopy. In addition to the expected latitudinal gradient, we detected large-scale patterns of anthropogenic and natural methane emissions. Furthermore, we observed unexpectedly high methane concentrations over tropical rainforests, revealing that emission inventories considerably underestimated methane sources in these regions during the time period of investigation (August through November 2003)

    Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide

    Get PDF
    In recent years, space-borne observations of atmospheric carbon dioxide (CO_2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO_2 column-averaged dry air mole fractions (XCO_2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO_2 measurements from satellites (Greenhouse Gases Observing Satellite – GOSAT, Thermal Emission Sounder – TES, Atmospheric Infrared Sounder – AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO_2 variability observed in HIPPO flights very well, with correlation coefficients (r^2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r^2 of 0.85, a mean bias ÎŒ of −0.06 ppm, and a standard deviation σ of 0.45 ppm. TES exhibits an r^2 of 0.75, ÎŒ of 0.34 ppm, and σ of 1.13 ppm. For AIRS, we find an r^2 of 0.37, ÎŒ of 1.11 ppm, and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS, respectively. Overall, we find that GOSAT soundings over the remote Pacific Ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO_2 observations

    Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground‐based TCCON data and model calculations

    Get PDF
    We report new short-wave infrared (SWIR) column retrievals of atmospheric methane (X_(CH4)) from the Japanese Greenhouse Gases Observing SATellite (GOSAT) and compare observed spatial and temporal variations with correlative ground-based measurements from the Total Carbon Column Observing Network (TCCON) and with the global 3-D GEOS-Chem chemistry transport model. GOSAT X_(CH4) retrievals are compared with daily TCCON observations at six sites between April 2009 and July 2010 (Bialystok, Park Falls, Lamont, Orleans, Darwin and Wollongong). GOSAT reproduces the site-dependent seasonal cycles as observed by TCCON with correlations typically between 0.5 and 0.7 with an estimated single-sounding precision between 0.4–0.8%. We find a latitudinal-dependent difference between the X_(CH4) retrievals from GOSAT and TCCON which ranges from 17.9 ppb at the most northerly site (Bialystok) to −14.6 ppb at the site with the lowest latitude (Darwin). We estimate that the mean smoothing error difference included in the GOSAT to TCCON comparisons can account for 15.7 to 17.4 ppb for the northerly sites and for 1.1 ppb at the lowest latitude site. The GOSAT X_(CH4) retrievals agree well with the GEOS-Chem model on annual (August 2009 – July 2010) and monthly timescales, capturing over 80% of the zonal variability. Differences between model and observed X_(CH4) are found over key source regions such as Southeast Asia and central Africa which will be further investigated using a formal inverse model analysis

    Relationship between ATSR fire counts and CO vertical column densities retrieved from SCIAMACHY onboard ENVISAT

    Get PDF
    SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY) is the first instrument to allow retrieval of CO by measuring absorption in the near infrared from reflected and scattered sunlight instead of from thermal emission. Thus, in contrast to thermal-infrared satellites (MOPITT), SCIAMACHY is highly sensitive to the lower layers of the troposphere where the sources, such as biomass burning, are located, and where the bulk of the CO is usually found. In many regions of the world, the burning of vegetation has a repeating seasonal pattern, but the amount of CO emitted from biomass burning varies considerably from place to place. Here we present a study on the relationship between fire counts and CO vertical column densities (VCD) in different regions. These results are compared with the CO VCD from MOPITT, aerosol index, and NO_2 tropospheric VCD (TVCD) from SCIAMACHY, and the coupled chemistry climate model (CCM) ECHAM5/MESSY

    Pressure broadening in the 2v_3 band of methane and its implication on atmospheric retrievals

    Get PDF
    N_2-broadened half widths and pressure shifts were obtained for transitions in the 2Îœ_3 methane band. Laboratory measurements recorded at 0.011 cm^(−1) resolution with a Bruker 120 HR Fouriertransform spectrometer were analysed from 5860 to 6185 cm^(−1). A 140 cm gas cell was filled with methane at room temperature and N_2 as foreign gas at pressures ranging from 125 to 900 hPa. A multispectrum nonlinear constrained least squares approach based on Optimal Estimation was applied to derive the spectroscopic parameters by simultaneously fitting laboratory spectra at different ambient pressures assuming a Voigt line-shape. At room temperature, the half widths ranged between 0.030 and 0.071 cm^(−1) atm^(−1), and the pressure shifts varied from –0.002 to –0.025 cm^(−1) atm^(−1) for transitions up to J"=10. Especially for higher rotational levels, we find systematically narrower lines than HITRAN predicts. The Q and R branch of the new set of spectroscopic parameters is further tested with ground based direct sun Fourier transform infrared (FTIR) measurements where systematic fit residuals reduce by about a factor of 3–4. We report the implication of those differences on atmospheric methane measurements using high-resolution ground based FTIR measurements as well as low-resolution spectra from the SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY) instrument onboard ENVISAT. We find that for SCIAMACHY, a latitudinal and seasonally varying bias of about 1% can be introduced by erroneous broadening parameters

    Atmospheric constraints on global emissions of methane from plants

    Get PDF
    We investigate whether a recently proposed large source of CH4 from vegetation can be reconciled with atmospheric measurements. Atmospheric transport model simulations with and without vegetation emissions are compared with background CH4, delta C-13-CH4 and satellite measurements. For present - day CH4 we derive an upper limit to the newly discovered source of 125 Tg CH4 yr(-1). Analysis of preindustrial CH4, however, points to 85 Tg CH4 yr(-1) as a more plausible limit. Model calculations with and without vegetation emissions show strikingly similar results at background surface monitoring sites, indicating that these measurements are rather insensitive to CH4 from plants. Simulations with 125 Tg CH4 yr(-1) vegetation emissions can explain up to 50% of the previously reported unexpectedly high CH4 column abundances over tropical forests observed by SCIAMACHY. Our results confirm the potential importance of vegetation emissions, and call for further research

    Methane spectroscopy in the near infrared and its implication on atmospheric retrievals

    No full text
    International audienceN2-broadened half widths and pressure shifts were obtained for transitions in the Q and R branches of the 2?3 methane band. Laboratory measurements were done from 5985 to 6185 cm?1 using spectra recorded at 0.011 cm?1 resolution with a Bruker 120 HR Fourier transform spectrometer. A 140 cm gas cell was filled with methane at room temperature and N2 as foreign gas at pressures ranging from 125 to 900 hPa. A multispectrum nonlinear constrained least squares approach based on Optimal Estimation was applied to derive the spectroscopic parameters by simultaneously fitting laboratory spectra at different ambient pressures assuming a Voigt line-shape. At room temperature, the half widths ranged between 0.030 and 0.071 cm?1 atm?1, and the pressure shifts varied from ?0.002 to ?0.025 cm?1 atm?1 for transitions up to J"=10. Especially for higher rotational levels, we find systematically narrower lines than HITRAN predicts. The new set of spectroscopic parameters is further tested with ground based direct sun FTIR measurements where fit residuals reduce by about a factor of 3?4. We report the implication of those differences on atmospheric methane measurements using high-resolution ground based FTIR measurements as well as low-resolution spectra from the SCIAMACHY instrument onboard ENVISAT. We find that for SCIAMACHY, a latitudinal and seasonally varying bias of about 1% can be introduced by erroneous broadening parameters
    • 

    corecore