107 research outputs found

    Light served with a twist

    Get PDF
    The insight of a classic study on optical orbital angular momentum, published a quarter-century ago, continues to resonate in new approaches to structuring, controlling and leveraging light beams

    Verification of Linear Optical Quantum Computing using Quantum Process Calculus

    Get PDF
    We explain the use of quantum process calculus to describe and analyse linear optical quantum computing (LOQC). The main idea is to define two processes, one modelling a linear optical system and the other expressing a specification, and prove that they are behaviourally equivalent. We extend the theory of behavioural equivalence in the process calculus Communicating Quantum Processes (CQP) to include multiple particles (namely photons) as information carriers, described by Fock states or number states. We summarise the theory in this paper, including the crucial result that equivalence is a congruence, meaning that it is preserved by embedding in any context. In previous work, we have used quantum process calculus to model LOQC but without verifying models against specifications. In this paper, for the first time, we are able to carry out verification. We illustrate this approach by describing and verifying two models of an LOQC CNOT gate.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Angular EPR paradox

    Full text link
    The violation of local uncertainty relations is a valuable tool for detecting entanglement, especially in multi-dimensional systems. The orbital angular momentum of light provides such a multi-dimensional system. We study quantum correlations for the conjugate variables of orbital angular momentum and angular position. We determine an experimentally testable criterion for the demonstration of an angular version of the EPR paradox. For the interpretation of future experimental results from our proposed setup, we include a model for the indeterminacies inherent to the angular position measurement. For this measurement angular apertures are used to determine the probability density of the angle. We show that for a class of aperture functions a demonstration of an angular EPR paradox, according to our criterion, is to be expected.Comment: 21 pages, 9 figures, to be published in J. Mod. Opt. special issue on quantum imagin

    Parallel axis theorem for free-space electron wavefunctions

    Get PDF
    We consider the orbital angular momentum of a free electron vortex moving in a uniform magnetic field. We identify three contributions to this angular momentum: the canonical orbital angular momentum associated with the vortex, the angular momentum of the cyclotron orbit of the wavefunction, and a diamagnetic angular momentum. The cyclotron and diamagnetic angular momenta are found to be separable according to the parallel axis theorem. This means that rotations can occur with respect to two or more axes simultaneously, which can be observed with superpositions of vortex states

    Passive broadband full Stokes polarimeter using a Fresnel cone

    Get PDF
    Light's polarisation contains information about its source and interactions, from distant stars to biological samples. Polarimeters can recover this information, but reliance on birefringent or rotating optical elements limits their wavelength range and stability. Here we present a static, single-shot polarimeter based on a Fresnel cone - the direct spatial analogue to the popular rotating quarter-wave plate approach. We measure the average angular accuracy to be 2.9 (3.6) degrees for elliptical(linear) polarisation states across the visible spectrum, with the degree of polarisation determined to within 0.12(0.08). Our broadband full Stokes polarimeter is robust, cost-effective, and could find applications in hyper-spectral polarimetry and scanning microscopy.Comment: 6 Pages, 4 Figure

    Comparison of beam generation techniques using a phase only spatial light modulator

    Get PDF
    Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation

    Phase-dependent interaction in a 4-level atomic configuration

    Get PDF
    We study a four-level atomic scheme interacting with four lasers in a closed-loop configuration with a \diamondsuit (diamond) geometry. We investigate the influence of the laser phases on the steady state. We show that, depending on the phases and the decay characteristic, the system can exhibit a variety of behaviors, including population inversion and complete depletion of an atomic state. We explain the phenomena in terms of multi-photon interference. We compare our results with the phase-dependent phenomena in the double-Λ\Lambda scheme, as studied in [Korsunsky and Kosachiov, Phys. Rev A {\bf 60}, 4996 (1999)]. This investigation may be useful for developing non-linear optical devices, and for the spectroscopy and laser-cooling of alkali-earth atoms.Comment: 4 figure

    Is the angular momentum of an electron conserved in a uniform magnetic field?

    Get PDF
    We show that an electron moving in a uniform magnetic field possesses a time-varying ``diamagnetic'' angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields
    corecore