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Parallel axis theorem for free-space electron wavefunctions
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Abstract
Weconsider the orbital angularmomentumof a free electron vortexmoving in a uniformmagnetic
field.We identify three contributions to this angularmomentum: the canonical orbital angular
momentum associatedwith the vortex, the angularmomentumof the cyclotron orbit of the
wavefunction, and a diamagnetic angularmomentum. The cyclotron and diamagnetic angular
momenta are found to be separable according to the parallel axis theorem. Thismeans that rotations
can occurwith respect to two ormore axes simultaneously, which can be observedwith superpositions
of vortex states.

1. Introduction

In classicalmechanics, an electronmoving in a uniformmagnetic field follows a circular orbit in the plane
perpendicular to the field, as dictated by the Lorentz force. This so-called cyclotronmotion, which occurs even
in the absence of a central potential, plays a role in areas as diverse as particle physics [1, 2], electronmicroscopy
[3], plasma physics [4], and also inmicrowave ovens [5].

Electrons can also possess quantized canonical orbital angularmomentumwhich does not depend on the
presence of amagnetic field. This is well known in the case of bound states in atoms and quantumdots [6], in
which there is a confining potential, however recently it was discovered that free electrons can be imprintedwith
orbital angularmomentum. Electron vortex beams [7–10], generated, for example, in electronmicroscopes,
have twistedwavefronts, and resemble freely propagating atomic orbitals. The understanding,manipulation
and exploitation of this angularmomentum for a range of technological applications is currently a very active
area of investigation [11–21].

In amagnetic field, an electron can possess both canonical orbital angularmomentum, and angular
momentum arising from the interactionwith the field. If themagnetic field is uniform, the canonical angular
momentum in the direction of the field is independent of the field and is constant [22].Meanwhile, themagnetic
field induces an additional current within the electron’s wavefunctionwhich gives rise to a diamagnetic angular
momentum [23–26].Manipulating the canonical and diamagnetic orbital angularmomenta of free electrons
recently led to thefirst direct imaging of Landau states [27, 28]. In addition to the diamagnetic rotation of an
electron’s wavefunction, however, in amagnetic field therewill generally also be a cyclotron orbit of the centre of
mass of thewavefunction [22, 29]. The angularmomentum associatedwith this cyclotronmotion has not
previously been considered.

In this paper, we show that the total orbital angularmomentumof the electron is described by the parallel
axis theorem. This angularmomentum comprises the canonical and diamagnetic components, which are
associatedwith rotation relative to the centre ofmass of thewavefunction, and a cyclotron component which has
expectation value equal to that for the classical orbit. Interestingly, for free electrons all three of these
components can have similarmagnitude. Thismeans that the trajectory of the electron is strongly dependent on
how these angularmomenta add and subtract. Further, we show that different cyclotron orbits can be
superposed, leading to rotationswith respect tomultiple parallel axes, and periodic interference. Our results
suggest novelmeans of structuring electron beams for use in specific applications, such as probingmagnetic and
chiralmaterials.

OPEN ACCESS

RECEIVED

14April 2015

REVISED

15 July 2015

ACCEPTED FOR PUBLICATION

11August 2015

PUBLISHED

9 September 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/9/093015
mailto:Sonja.Franke-Arnold@glasgow.ac.uk
mailto:Robert.Stamps@glasgow.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093015&domain=pdf&date_stamp=2015-09-09
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093015&domain=pdf&date_stamp=2015-09-09
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


2.Model

Weconsider an otherwise free electronmoving under the influence of a uniformmagnetic field.We take the
direction of thismagnetic field to define our z axis, and consider themotion of the electronwithin the x–y plane.
The electronmay also bemoving in the z direction, however the component of itsmomentum in this direction is
a constant ofmotion [25], andwill not affect our results.We consider non-relativistic energies,meaning that the
spin angularmomentum is also constant, and can be separated from the orbitalmotion of the electron [30]. In
what follows, we shall consider only the electron’s orbital angularmomentum. Themagnetic field B zB ˆ= can
be described by the cylindrically symmetric vector potential A B 2f̂r= / , where ρ andf are cylindrical polar
coordinates. This choice of gauge is convenient as it allows us to exploit the rotational symmetry of themagnetic
field. OurHamiltonian is therefore
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where p v p Am ekin can= = -^ ^ ^ ^ is the component of the electron’s kineticmomentum in the plane
perpendicular to themagnetic field, p ican = -^ ^ is the corresponding canonicalmomentum component,
L p iz

can can r f= = - ¶ ¶f / is the z-component of the canonical orbital angularmomentum, e e∣ ∣= - is the

electron’s charge, andm itsmass.
We are interested in the evolution of non-stationary states of the system, described by the time-dependent

Schrödinger equation
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where r ,( )r f=^ is the position of the electron in the plane perpendicular to themagnetic field.Note that if the
electron ismoving along the z axis with a velocity vz, the Schrödinger equation (2)describes the state of the
electron after a propagation distance of z v tz= [27].

An electronwithmomentum transverse to themagnetic fieldwill exhibit cyclotronmotion. This is
conventionally described in a classical context. Here wewill derive the cyclotronmotion by assuming an electron
wavefunction
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where ℓ Î .We have defined the x axis as the direction of the transverse kineticmomentum at t= 0. This state
has a rotationally symmetric probability density u0

2 2∣ ∣ ∣ ( )∣rY = , and an expectation value of canonical angular
momentum Lz

can ℓá ñ = .We shall see that themomentum p xpkin
0 c ˆá ñ =^ results in a cyclotron orbit of the

wavefunction.
Note that in ourmodel the canonical orbital angularmomentum is not collinear with the instantaneous

direction of propagation of thewavefunction. This is illustrated infigure 1. The angularmomentum is in the
direction of themagnetic field, while the kineticmomentumhas a component perpendicular to themagnetic
field. This contrasts with vortex states, either infield-free space or in amagnetic field, which are energy
eigenfunctions, as these havemomentum and angularmomentumwhich are collinear [29, 31]. Electrons in
non-stationary states can have angularmomentum at an arbitrary angle to their direction of propagation,

Figure 1.Cyclotron trajectory of the centre ofmass of thewavefunction. This orbit occurs with respect to the axis y y0= , the position
of which depends on the initial transversemomentum pkin

0á ñ^ as well as themagneticfield. Also indicated is the direction of the
canonical orbital angularmomentum zLz

can ˆá ñ .
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however [22, 32, 33]. Here, as a result of the cyclotron orbit, the time-averaged expectation value of kinetic
momentum is collinear with the angularmomentum Lz

caná ñ.

3. Electron trajectories and angularmomentum

In the followingwewill show that the different forms of angularmomentumgive rise to rotationswith respect to
more than one axis. This can be seen by examining the ‘trajectories’ associatedwith the electron’s probability
distribution and current density.

First, wewill consider the expectation value of the electron’s position, which is equivalent to the centre of
mass of its probability distribution. Differentiating twicewith respect to time, we obtain the equation ofmotion
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where eB mcw = - is the cyclotron angular velocity and y p e B0 c (∣ ∣ )= . Herewe have used the fact that the

quantity x yx p eB y p eBy x
kin kin( ) ˆ ( ) ˆ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦+ + - , which is the centre of the orbit of a classical particle which has

position r̂ andmomentum pkin
^ [34], has the constant expectation value yy0 ˆ. The initial position and velocity of

the centre ofmass of the probability distribution are given by r 00( )á ñ =^ and
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respectively, and substituting these into (4) yields the trajectory
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This trajectory, illustrated infigure 1, is a circular orbit with radius
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and angular velocity cw —the cyclotron orbit of a classical particle with themomentum pc. The trajectory of the
centre ofmass of the probability distribution is therefore independent of the canonical angularmomentumof
the electron.

The canonical angularmomentum is instead associatedwith a circulation of current within the electron’s
probability distribution. This can be seen by examining the probability current density j r t,( )^ ^ =

p mRe kin( )*Y Y^ . To do sowe have solved the time-dependent Schrödinger equation (2)numerically using the
Chebyshevmethod [35–37], as described in appendix A.Wemust first specify the radial distribution, u ( )r , of
the initial wavefunction (3). Herewewill set this to be the same as that of a Landau state—one of the energy
eigenstates of the system:
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where n 0, 1, 2,= ¼ is the radial quantumnumber, Ln
ℓ is an associated Laguerre polynomial, Br =

eB4 ∣ ∣ is thewidth of theGaussian envelope and N n n2n B, ℓ! [ ( ∣ ∣) !]ℓ p r= + is a normalization
constant. Thismeans that if p 0c = , the electronwould be in a Landau state. An arbitrary radial distribution
could be decomposed in terms of the eigenfunctions un,

Lan
ℓ .

The time-evolution of the probability density 2∣ ∣Y and the current density ĵ are shown in figure 2.Here the
transversemomentum pc has been chosen such that the radius of the cyclotron orbit is approximately equal to
thewidth of the probability distribution. In (a) and (b) the electron has no net canonical orbital angular
momentum,while in (c) and (d) it has a canonical orbital angularmomentum 1ℓ = . The evolution of these
states is shown for different directions of themagnetic field, which result in different directions of the cyclotron
orbit.Whereas the probability density follows a straightforward classical orbit, the current density is seen to
depend in a non-trivialmanner on both thewavefunction and themagneticfield. In particular, in contrast to the
classical cyclotron trajectory, and also to orbital angularmomentum eigenstates in the absence of amagnetic
field, the current distribution here is not rotationally symmetric. The rotational symmetry of the probability
distribution, with respect to its centre ofmass, is preserved, however. This reflects the fact that themagnetic field
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is rotationally symmetric, and the canonical angularmomentum Lz
can is conserved. Thismeans that the

canonical orbital angularmomentumof the electron is associatedwith a rotation axis at the centre ofmass of the
probability distribution, and is independent of the cyclotron orbit.

More surprising, perhaps, is that rotations in fact occurwith respect to the cyclotron axis and the centre of
mass axis evenwhen the electron does not possess any net canonical angularmomentum. This is as a result of the
diamagnetic angularmomentum that any electronwavefunction possesses in the presence of amagneticfield
[23, 24]. This angularmomentum arises as a result of the circulating current themagnetic field induceswithin
thewavefunction, and is associatedwith a rotation of the probability density at the Larmor angular velocity

eB m2 2L c ( )w w= = - [27, 38]. The diamagnetic angularmomentum is equal to L Iz
dia

Lw= ¢ , where

I m 92 ( )r¢ = á ¢ ñ

is themoment of inertia of the electron’s probability distribution, in the reference frame of its centre ofmass
[25]. Here r r∣ ∣r¢ = - á ñ^ ^ is the radial coordinate in this reference frame. This angularmomentumhas the

Figure 2.Probability density 2∣ ∣Y and current density ĵ forwavefunctions with canonical orbital angularmomentum 0ℓ = (a), (b)
and 1ℓ = (c), (d), for opposite directions of themagneticfield. In each case the transversemomentum is p 2 Bc  r= and the
wavefunction has the radial distribution u0,

Lan
ℓ . The red arcs indicate the trajectory of the centre ofmass of the probability distribution,

which is highlighted in green.
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same direction as the externalmagnetic field,meaning that the associatedmagneticmoment,
eL m2z z

dia dia ( )m = , opposes the external field, in accordancewith Lenz’s law. In contrast to cyclotronmotion,
the diamagnetic rotation depends on there being an extended probability distribution, and vanishes in the
classical limit. For the Landau radial distribution un,

Lan
ℓ , themean square radius is n

2
,

Lan
ℓrá ¢ ñ = n2 1 2B

2ℓ( ∣ ∣ )r+ + ,
and the diamagnetic angularmomentum therefore takes the quantized values
L B nsign 2 1z

dia, Lan ℓ( )( ∣ ∣ )= + + [29]. The effect of the diamagnetic angularmomentumbecomes clear
whenwe consider a superposition of opposite values of canonical orbital angularmomentum, such as that
shown infigure 3. As this superposition has no net canonical angularmomentum, the rotation of the electron’s
probability density with respect to its centre ofmass is due entirely to the diamagnetic angularmomentum.
Previously we have interpreted this as a formof Faraday rotation for electrons [30].

In general, the orbital angularmomentumwith respect to the centre ofmass axis will be given by a sumof
canonical and diamagnetic contributions. Themotion is thus described by two independent rotations: the
cyclotron orbit, and the rotation around the instantaneous centre ofmass axis due to the canonical and
diamagnetic angularmomenta.

4. Parallel axis theorem

The rotation of the electron’s wavefunction is reminiscent of a classical rigid body.Wewill explore this analogy
further by considering the kinetic angularmomentumof the electron, which is the totalmechanical angular
momentum it possesses whilemoving in themagnetic field. This angularmomentumhas the z component

L p L eB
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2
, 10z z

kin kin can 2 ( )r r= = -f

with an expectation value of

L I 11z
kin

Lℓ ( ) wá ñ = +

for any state with a canonical orbital angularmomentum ℓ . Here I m 2r= á ñ is themoment of inertia of the
electron’s probability distribution for rotationwith respect to the z axis. Just as with a rigid body, we can use the
parallel axis theorem to express themoment of inertia I as a sumof two components:

I m I , 120
2 ( )r= + ¢

where r t2 1 cos0 c∣ ∣ ( )r w s= á ñ = -^ , withσ defined by (7), is the radial coordinate of the centre ofmass,
and I ¢ is themoment of inertia with respect to the centre ofmass axis, given by (9). These two components
correspond to the cyclotron orbit of thewavefunction and its diamagnetic angularmomentum respectively. The
total kinetic angularmomentumof the electron, whichwe obtain from (11) and (12), can therefore be expressed
as

L L L , 13z z z
kin cyclo diaℓ ( )á ñ = + +

where L m t m1 cosz
cyclo

L 0
2

c c
2( )w r w w s= = - is the angularmomentum associatedwith the cyclotron orbit.

While the relation between the kinetic and canonical angularmomenta in (10) is true also for a classical point
particle [39], the decomposition into separate cyclotron and diamagnetic components which follows from (12)
is onlymeaningful for an extended probability distribution.

Figure 3.Probability density and current density for an equally weighted superposition ofwavefunctions which both have transverse
momentum p 2 Bc  r= , but have opposite values of canonical angularmomentum 1ℓ =  . The constituent states have the same
radial distributions as infigure 2.
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Unlike the canonical and diamagnetic components, the cyclotron angularmomentumdepends on our
choice of reference axis. A natural choice is to consider the angularmomentumwith respect to the centre of the
cyclotronmotion. In this reference frame, whichwe reach bymaking the transformation y y y y0˜ = - , the
cyclotron angularmomentumhas the constant value

L m . 14z
cyclo

c
2˜ ( )w s=

Irrespective of the reference frame, of course, the total kinetic angularmomentumwill be equal to the sumof the
three components described.

Onemay expect that the cyclotron angularmomentum,which exists classically, would be the dominant
contribution to the electron’s kinetic angularmomentum.However, this need not be the case, as can be seen by
considering typical parameters for free electrons in electronmicroscopes. For example, if an electron beam
which is initially propagating parallel to amagneticfield is transmitted through a diffraction gratingwith a
period d 100 nm= , the first diffraction orderwill have a net transversemomentumof p d h d2c ( ) p= = ,

which corresponds to an energy of p m h md2 2 0.15 meVc
2 2 2( ) ( )= = . In amagnetic field of B 1 T= , the

resulting cyclotron orbit, which has radius 41 nm, will have an angularmomentumof 2.6 . This is of the same
order ofmagnitude as the canonical angularmomentumof the lowest order vortex states, and considerably
smaller than that of vortex beams recently generatedwith awinding number of 200ℓ = [21]. Indeed, in a given
magnetic field, the cyclotron angularmomentum can in principle have any size, ranging from zero to
macroscopic values, depending on the net transversemomentum pc. The diamagnetic angularmomentum can
also take awide range of values, as themean square radius of the probability distribution is varied [25], although
this has a lower limit due to the uncertainty principle and amaximumdue to the requirement of spatial
coherence. Thismeans that the different rotationswe have described can indeed occur on the same length scale,
justifying the choices of parameters in ourfigures.

5. Superposition of cyclotron orbits

So farwe have considered rotationswith respect to two different axes—the cyclotron axis, as well as the centre of
mass axis. The position of the cyclotron axis was defined by the transversemomentum pc which appears in a
planewave factor in thewavefunction (3). Suppose, however, that we have a superposition of different transverse
momenta. Arbitrary distributions of transversemomentum could be created using appropriately designed
holograms [40–43]. A simple examplewould be the following superposition of twomomenta, pc,1 and pc,2,
whichmay also be associatedwith different canonical orbital angularmomenta,ℓ1 andℓ2:
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This is similar to thewavefunction formedwhen a planewave is transmitted through a forked diffraction grating
[10]. For the discussion here the particular formof the radial distribution is not important, and the Landau
function has been chosenwith numerical efficiency inmind. The evolution of such a state, here with equal and
opposite values of both the transversemomentum and canonical angularmomentum, is shown infigure 4. It
can be seen that there are now two cyclotron orbits, which have different rotation axes. These are associatedwith
different directions of the initialmomentum pc. As a result, the two components of the superpositionmove
apart, before re-combining and interfering.

Taken together, the cyclotron orbits infigure 4 describe a rotation, with respect to the z axis, at the Larmor
angular velocity Lw . This is consistent with the predictions of classical electron optics regarding image formation
in rotationally symmetricmagnetic lenses [3]. Interestingly, though, in our case the axis of the Larmor rotation is
not defined by a symmetry of themagnetic field—a uniformmagnetic field is rotationally symmetric with
respect to an infinite number of axes. Rather, here the Larmor rotation occurs with respect to the centre ofmass
of the electron’s probability distribution. This is the case both infigure 3, where the centre ofmass follows a
cyclotron orbit, and infigure 4, where the centre ofmass is stationary. Further, itmust be remembered that we
are considering here a single electronwhich is in a state of superposition. Thismeans, for example, that if one of
the two cyclotron components infigure 4 underwent an interactionwhichmodified its phase, this could be
detected through its effect on the subsequent interference pattern.

6. Summary and outlook

In summary, we have shown that in amagnetic field an electron can rotate aroundmore than one axis
simultaneously. Thewavefunction of the electron follows a cyclotron orbit, and superposed onto this is a
rotation around the instantaneous centre ofmass. The rotationwith respect to the centre ofmass axis arises as a
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result of the diamagnetic angularmomentum, aswell as any canonical orbital angularmomentum the electron
possesses. The kinetic angularmomentumof the electron is therefore described by the parallel axis theorem.

Our results show that canonical orbital angularmomentum and cyclotronmotion provide separate degrees
of freedom for shaping electron current distributions. This could allow electron beams to be structured for use
in specific applications. For example, the symmetry of the current distribution could be optimized to probe
specific transitions inmaterials [40, 44]. Itmay also be possible to utilize cyclotron trajectories in novel forms of
interferometry.Moreover, here we have only considered the case inwhich the canonical angularmomentum
andmagnetic field are parallel, so that the rotation is confined to a plane.With canonical angularmomentum
andmagnetic fields which are in different directions to one another, the angularmomentum and current density
could be shaped in three dimensions.

Further, if the angularmomentawere in different directions, it appears that theywould become coupled.
Canonical orbital angularmomentumwhich is at an angle to a uniformmagnetic fieldwould be expected to
precess around the direction of thefield [22, 33]. The canonical angularmomentum is also not conservedwhen
the rotational symmetry of themagnetic field is broken, such as in astigmaticmagnetic lenses [45–47]. Not only
this, but in non-uniformmagnetic fields the spin and orbital degrees of freedomof an electronwith non-
relativistic velocity are no longer independent [12, 48]. The nature of the coupling between all of these angular
momenta is an interesting avenue for future investigation.
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AppendixA.Numerical solution of Schrödinger equation

The time-dependent Schrödinger equation can be solved numerically with high accuracy and efficiency by
expanding the time-evolution operator in a series of Chebyshev polynomials. In this appendix, we describe how
thismethod can be applied to the two-dimensional Schrödinger equation for an electron interactingwith an
externalmagnetic field. For generality, we shall consider here aHamiltonian of the form
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Figure 4.Probability density and current density for an equally weighted superposition of a wavefunctionwith p 3 Bc  r= and
1ℓ = - and awavefunctionwith p 3 Bc  r= - and 1ℓ = . The constituent states have the same radial distributions as infigures 2

and 3. The centre ofmass of the superposition remains stationary in the x–y plane, while the individual components follow the
cyclotron trajectories indicated.
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[37] . In the case of theHamiltonian used in themain text, wewould have S m22
2 ( )= - ,

S eBy m2x1 ( )= - , S eBx m2y1 ( )= and S e B x y m80
2 2 2 2( ) ( )= + . TheMathematica codewe have used to

perform these calculations has beenmade available online at [49].
Since theHamiltonian (16) is independent of time, we canwrite the solution of the Schrödinger equation as

t t t texp
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Y + D = - D Y

In order to evaluate this numerically, first wemust represent thewavefunction, and the coefficients S2 etc., on a
two-dimensional grid. If this grid covers an area L Lx y´ , and contains N Nx y´ points, then themaximum
spatial frequencies represented are k N Lx x x,max p= and k N Ly y y,max p= . Themaximumandminimum
values of energy represented on the grid are then
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Let us now introduce a newoperator
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where a E E 2max min( )= - and b E E 2max min( )= + . This operator has eigenvalues represented on the grid
which lie in the range 1, 1[ ]- .We can then expand the time-evolution operator in a series of Chebyshev
polynomialsTq ( ˜ ) :
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» - D D Y
=

Chebyshev polynomials are chosen as theseminimize the error associatedwith truncating the expansion at a
finite orderM [35]. The expansion coefficients are given by

a t
J a t q

J a t q

i , 0

2 i , 0
22q

q
q

q
q

( )
( ) ( )

( ) ( )
( )

⎧⎨⎩



a D =

- D =
- D ¹

where Jq is a Bessel function. For q a te 2( )> D , where e, in roman font, denotes themathematical constant,
themagnitudes of these coefficients decay exponentially with increasing q [50, 51]. Thismeans that the error due
to truncating the series at orderM, which can be estimated by a tM∣ ( )∣a D , can bemade arbitrarily small. If we set

M a t
e

2
, 23( )


d= D +

δ can be adjusted so that this error is less thanmachine precision. The numerical error resulting from the
Chebyshev expansion is then negligible.

In order to evaluate the individual terms in the expansion (21), the action of theChebyshev polynomial
Tq ( ˜ ) on the initial wavefunction t( )Y must be calculated. Using the recurrence relation for theChebyshev
polynomials, we obtain

T t T t T t2 , 24q q q1 2( ) ( ) ( )˜ ( ) ˜ ˜ ( ) ˜ ( ) ( )   Y = Y - Y- -

for q 0> , with the initial conditionsT t t0 ( ˜ ) ( ) ( ) Y = Y andT t t1( ˜ ) ( ) ˜ ( ) Y = Y . The action of the
Hamiltonian on thewavefunction can be efficiently calculated by evaluating the spatial derivatives in Fourier
space [50, 52]. That is,

t S k k S k

S k S

FT FT i FT i FT

i FT i FT , 25

x y x x

y y

2
1 2 2

1
1

1
1

0

( ) ( )
( )

( )

( )

⎡⎣ ⎤⎦Y » - - Y + Y

+ Y + Y

- -

-

where kx, ky are the coordinates in Fourier space and FTdenotes a discrete Fourier transform and FT 1- the
corresponding inverse transform.
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