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Abstract: ~ Whether in art or for QR codes, images have proven to be
both powerful and efficient carriers of information. Spatial light modulators
allow an unprecedented level of control over the generation of optical fields
by using digital holograms. There is no unique way of obtaining a desired
light pattern however, leaving many competing methods for hologram
generation. In this paper, we test six hologram generation techniques
in the creation of a variety of modes as well as a photographic image:
rating the methods according to obtained mode quality and power. All
techniques compensate for a non-uniform mode profile of the input laser
and incorporate amplitude scaling. We find that all methods perform well
and stress the importance of appropriate spatial filtering. We expect these
results to be of interest to those working in the contexts of microscopy,
optical trapping or quantum image creation.

© 2016 Optical Society of America

OCIS codes: (090.1760) Computer holography.; (230.6120) Spatial light modulators;
(140.3300) Laser beam shaping.
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1.

Introduction

Light has been manipulated to solve a vast range of problems throughout history. In the past
such control was largely achieved with static optics: lenses, prisms, apertures and mirrors in
particular; and while these have an incredible range of application, producing completely arbi-
trary optical fields requires much finer control. As a first step, one can gain control of the shape
of a beam through careful sculpting of the light amplitude: an idea that pioneered the technique
of holography [1}2]], where amplitude masks can be used to reproduce a ‘writing’ laser beam.
Although eminently useful, such generation was restricted to pre-determined beam designs.

It was the advent of spatial light modulators (SLMs) which made the breakthrough to arbi-



trary beam generation, allowing flexible beam shaping in a wide range of applications including
optical tweezers [3], quantum information [4]f], coherence tuning, atom trapping [SH8|] and stor-
age [9L/10] amongst others.

Light, by nature, is intrinsically complex, and to gain full control of a light field one must be
able to arbitrarily specify both the phase and amplitude profile. SLMs allow full spatial control
over the phase directly, but amplitude control must be achieved indirectly. For instance one can
use two SLMs in series to create any arbitrary field by exploiting polarisation optics to convert
phase to amplitude information [11,/12] and there are more advanced techniques, which can
manipulate the amplitude and phase with only a single phase-only SLM [1322].

Here, we concentrate on deterministic methods based on single-pass, digital holograms, aim-
ing for the highest possible accuracy in field reconstruction. These techniques rely on the use
of phase gratings, which deflect a tunable portion of the light away from straight reflection.
Therefore, simply by modifying the grating depth and by spatially selecting the first-order de-
flection, precise amplitude control can be achieved, independently of the phase control. This
also significantly improves the mode purity, by spatially decoupling the shaped and unshaped
light.

There is no unique way to completely control both the amplitude and phase of a field using
phase-only holograms and as such, there have been many techniques suggested in the litera-
ture throughout the years [[13}[23125]]. In this paper we test several of these methods, under
the same conditions, both numerically and experimentally, in order to elucidate each of their
strengths and weaknesses. We note that a previous study [26] compared some of these methods
in the specific case of a single Laguerre-Gauss mode. Here, we generate a range of beams to
cover likely applications, including fundamental Gaussians, Laguerre-Gaussian (LG) modes,
ring lattices and photographic images, and investigate the relative beam quality achieved by six
different techniques.

The paper starts with an introduction to the different hologram generation methods under dis-
cussion. We will then introduce the theoretical framework for phase-only hologram generation
and use it to make initial predictions before describing the experimental set-up and procedure.
The results will then be discussed and the generation methods will be assessed against two sep-
arate criteria in order that the reader may choose the technique best suited to their application.
We conclude by analysing some of the challenges arising from real laboratory experiments.

2. Hologram generation

We wish to use a phase-only hologram H = H(x,y) to generate a desired field Eqes(x,y) =
Ades (x,y) exp(i@ges (x,y)) from an input field Ei, (x,y) = Ain (x,y) exp(i®in (x,y)). Imposing that
the desired field after the SLM should be spatially separated from the zeroth-order reflection to
maximise the field purity, then:

Ein(x,y)e® i 5 0¥ = Eye (x, y)elkaesT 4]

where £ = (&,§,2) and K';; and kg5 are the wavevectors of the input and desired beam respec-
tively when considering the SLM in a transmissive picture with angle of incidence 8 = 0 ( see
inset of Fig.[I]). The effect of the hologram, ignoring a uniform attenuation caused by reflection
of the beam on the SLM surface, then follows as:

G () _ Eaes(0Y) itkge k)¢
Ein (.X, y)
= Arai(x,y) e Prete) 2)

where the relative field amplitude Ag(x,y) = Ages(%,y)/Ain(x,y) and total relative phase
Dretg (x,Y) = Pges(x,¥) — Pin(x,y) + (Kges —K'in) - T lie in the intervals [0,1] and [—m, 7] re-



spectively and we are assuming a small angle between Kqes and K'i,. In our setup, the spatial
offset is achieved by applying a phase grating ®, (x,y) of the form

Dy (x,y) = Mod(z%c,zn), 3)

where the A = 277/ (Kges — K'in) is the grating period which in our experiments and simulations
were taken to be A = 4 pixels.

The most naive approach to generating an input-corrected hologram would then simply be to
imprint the relative phase i.e.

H(X,y) = q)relg(-xyy)' (4)

Although this approach generates a beam with the desired phase and spatial offset, the intensity
profile remains that of the input beam, with dark areas developing only after propagation around
the position of phase discontinuities (steps, vortices etc.), as shown in Fig. 2{b).

Eq. (@) however, confirms that amplitude modulation is necessary and this can be introduced
by modulating the depth of the total phase profile, ®reig (X,y) = Pyes (X, y) — Pin(x,y) + Py (x,y),
with a function f(A(x,y)). Spatially lowering the grating height degrades the diffraction effi-
ciency, and thus by intelligent choice of the function f(A(x,y)), the diffracted intensity in the
first order can be manipulated for full beam shaping. This typically results in holograms H (x,y)
of the form

H(xv))) :f(A(xvy))cDrelg(-xvy)' &)

There are many methods for generating holograms of this form and although analytical solu-
tions may appear to be exact we note that various experimental effects, including spatial filtering

Variable
Aperture

Fig. 1. A fibre-coupled 776 nm laser (with 4.9 pm l/e2 mode field diameter) is first ex-
panded to a waist of 4.65 mm before illuminating the centre of the SLM, where the inset
highlights the axes and wavevectors of interest. The output beam is then Fourier filtered
before being imaged at one of three propagation distances.



Fig. 2. (a) Desired intensity of a Laguerre-Gaussian superposition mode. (b) Experimen-
tally realised intensity after propagation by 1 Rayleigh range when only the phase is con-
trolled.

and SLM pixelation, render all methods imperfect. A numerical and experimental comparison
of a selection of such methods are therefore outlined below.

2.1. Method A

The first method we consider is designed as a benchmark where we simply scale the relative
phase hologram by the relative amplitude at each point i.e.

H(X,)’) :Arel(x7y)q)relg(an)' (6)

For a grating depth of 27, theoretically all light can be diffracted into the first order, but as the
grating depth decreases, light is removed from the first order and appears in the zeroth order. In
this way, the scaling function f(A(x,y)) = Arei(x,) is used to encode the relative amplitude of
the desired and input fields. This naive approach assumes a direct linear relationship between
grating depth and amplitude, which although incorrect, produces surprisingly good light modes,
and the technique is widely used, often even without taking into account the spatial shape of
the input beam.

2.2. Method B

The next method we consider takes its inspiration from techniques used when holography was
first introduced by Gabor in 1947. Traditional holographic methods record the scattered light
from an object by interfering the light with a coherent reference beam on a fine-grained pho-
tographic film [2]]. Once developed, the film’s transparency is related to the intensity of the
interference pattern at every given point, such that subsequent illumination of the developed
film with the reference beam produces a reconstruction of the light scattered from the object. A
similar method can be used in the context of SLMs. In this case however, the phase information
in the interference pattern is used as the hologram, rather than the intensity information. The
hologram is then calculated by taking the argument of the complex superposition, such that

H(x,y) = arg (NEgg(x,y) + Ein(x,)) 7

where Egg(X,y) = Ades (¥, y)e"<‘1>des (x))+®¢(x.y)) and N is a normalisation factor to ensure Egg(x,y)
never exceeds Ej, (x,y). It should be noted that this hologram encodes both phase and amplitude
information as it sums the fields before taking the argument.

2.3. Method C

Along the same lines as method A, a more rigorous hologram generation technique was put
forward by Davis et al. [23]]. Fourier analysis of a phase grating shows that the amplitude of the



light diffracted into the first order is given by

A = S AEIT sine [ (1 — f(A(x,y)))] (8)
where we use the standard definition: sinc(w) = sin(w)/w. Omitting the exponential term, nu-
merical inversion of Eq. (8) then gives

flA) = 1= 2 sine! (4) o)

where f(A(x,y)) is the amplitude modulation defined in Eq. (5) and sinc~! denotes the appro-
priate inverse function defined on [0, ] thereby scaling the amplitude between 0 and 1. Using

Eq. (§) gives
1
H(x,y) = (1 - sinc™! (Al (x, y))) Dretg (X, ). (10)

2.4. Method D

Later work carried out by Bolduc er al. [25] however, points out that the phase term in Eq. (8)
may also have an effect on the generated field, adding an unwanted amplitude dependent term
to the phase profile. They suggest that an improved technique would include a correction for
this and therefore propose a hologram given by

H(x,y) =M (CIDIelg(x,y) — 71'M) , Where an

1
M= 1+Esinc*1 (Arer(x,y)) - (12)

2.5. Method E

Anotherl approach to generating holograms was proposed by Arrizon et al. [24] where the au-
thors show that holograms of forms other than H (x,y) = f(A(x,y))®re1g (x,y) are also possible.
One technique they suggest is based on a hologram of the form

H(x,y) = (Drelg(xay) + f(Arer(x,y)) Sin(q)rclg(xa)’))' (13)

They show that, in order to create the desired output field in the first order of the diffraction
pattern, f(Ari(x,y)) must be obtained from

J()[f(Arel(xay))] :Arel(xvy) (14)

where Jj is the zero-order Bessel function and f(A(x,y)) can be recovered by numerical
inversion.

2.6. Method F
ArrizOn et al. [24] also considered holograms of the form
H(x,y) = f(Arel (x,7)) sin(Preig (x,)) (15)
where f(Are(x,y)) must be obtained from
Ji[f (Arer(x,y))] = aArer (x,y). (16)

Here a is a constant between 0 and 0.5819, the maximum of the first order Bessel function J; (x).
The authors suggest that a particular strength of this hologram is that it can be implemented on
an SLM with reduced phase range.
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Fig. 3. (a) Intensity and phase (inset) of the input Gaussian beam. (b) Intensity and phase
(inset) of the desired beam (here shown for an ’optical Ferris wheel’ beam). (c) Hologram
generated using method A, where the 8-bit greyscale is converted to phase by the SLM.
(d) Intensity and phase (inset) of the beam generated by the input beam in (a) and the
hologram in (c). The phase insets use phase ranges from —7 to 7 periodically (red to red on
a standard colour wheel). () Numerical evalution of the mode quality for the six different
hologram generation methods, shown for imaging plane (0.0zg ) and further propagation by
half (0.5zg) and a full Rayleigh range (1.0zR).

3. Numerical model

To assess the methods outlined above we define a set of test beams including 3 modes based
on Laguerre-Gauss (LG) [27] modes and their superpositions and 1 photographic image. LG
modes contain optical vortices associated with dark regions in amplitude and a winding in
phase. They are characterised by two parameters, a winding number ¢ and a radial order p,
however for this investigation we restrict ourselves to modes with p = 0 and define a Laguerre-
Gaussian mode of order ¢ to be LGy.

Within this set we have chosen three test beams: a simple fundamental Gaussian LGy, a single
Laguerre-Gaussian mode of moderate order (LG1) and a spatially intricate superposition of LG
modes |LG3 + LGy \2; o= |13—1|%, known as an optical Ferris wheel [6]. A final test is made
with a non-propagating field shape: a scene of an appropriately named ‘Laser class’ sailboat.

In our simulations, we use the LabVIEW development environment to both generate the
holograms and to predict the resulting intensity and phase profiles after spatial filtering and
propagation. We begin by defining the input beam Ej, (x,y) and the desired beam Eges(x,y)(as
shown in Figs. a) and b) respectively) and use these to calculate H(x,y) according to the
methods outlined above (see Fig. [3[c) for an example hologram). The output field is then given
by applying the hologram phase to the input field such that:

Eou(x,y) = Ein(x,y)ef), (17)

As discussed, our desired beam is produced in the first diffracted order of the grating which
has to be separated from the rest of the field. This is achieved by spatially filtering the beam
in the far field, where the diffraction orders are well separated. Numerically, we model this by
taking the Fourier transform of Eqy(x,y) and multiplying the resulting field by a circular mask
(set to 1 mm diameter for these results), setting all of the values outside the circular region to
zero. The exact size of this filter plays a significant role in the beam quality and is discussed
in more depth in the final section on experimental details. Using an inverse Fourier transform
on the filtered data then gives the amplitude and phase of the new light field at the imaging
plane of the SLM, as shown for method A in Fig. [3(d). We note that after the selection of the
first order, we subtract the grating phase from the field in order to remove the associated tilt,



Desired A B C D E F

Fig. 4. An overview of the measured beam intensities for an optical Ferris wheel shaped
according to each hologram generation method (horizontal) and propagation distance (ver-
tical) respectively. The first row shows the simulated prediction for each method and the
first column indicates the desired field intensity for 0.0, 0.5 and 1.0 Rayleigh ranges.

where of course in practice the selected order will continue to propagate at an angle to the pure
reflection.

Using this model, we predict the intensity profile of the light at the imaging plane of the SLM
as well as for propagation of 0.5 and 1.0 Rayleigh ranges, for methods A-F. These predictions
are then compared to the intensity of the desired mode using the peak signal-to-noise ratio
(PSNR) (as described in the results section) as a beam quality metric. The results are plotted in
Fig. 3[e) we infer that all of the methods, with the significant exception of method E, should
produce reasonable results. Method F in particular, somewhat surprisingly, should give the
best results for all propagation distances by approximately 10dB, with method C predicted to
yield the next best overall results. Additionally, we see that method D’s performance should
deteriorate steeply after half a Rayleigh range of propagation and yet maintain the same beam
quality after a full Rayleigh range. Finally, we note that naive amplitude scaling, method A, is
predicted to do quite well, very slightly outperforming method C outside of the imaging plane.
We next test these predictions in experiment.

4. Experimental setup

The experimental setup is shown in Fig.[I] The light (generated from a 776 nm Toptica DL100)
passes through a single-mode fibre, to spatially filter the beam, before passing through a beam
expanding telescope which increases the beam waist to 4.65 mm. The beam is then reflected
off an SLM (Hamamatsu LCOS X13138-01 ) at approximately three degrees before it prop-
agates through a final telescope. In the Fourier plane of this telescope we filter the first order
with an aperture set to a diameter of ~ 1 mm. The intensity patterns are then recorded on a
camera (Point Gray Chameleon CMLN-13S2M-CS) at the image plane of the SLM, followed
by measurements 0.5 and 1.0 Rayleigh ranges away from this image plane.



Desired A B C D E F

Fig. 5. An overview of the measured beam intensities for a fundamental Gaussian, an LG
and an arbitrary image according to each hologram generation method. The first column
indicates the desired pattern, the first and middle row show the measured beam after one
Rayleigh range of propagation and the bottom row shows an arbitrary scene in the image
plane of the SLM.

4.1. Input intensity measurement

Amplitude modulation relies on an accurate knowledge of the input profile, which in most
experiments will be a Gaussian, large enough to provide adequate power over the appropriate
hologram region. Beam quality (as measured by PSNR) decreases considerably if instead a
plane wave input field is assumed. A cursory simulation shows that assuming a plane wave leads
to a loss of as much as 10dB of image quality (as discussed in the final section). The easiest way
of measuring an incoming beam’s intensity profile would be to take an image with a camera,
positioned at the exact location of the SLM - however this is experimentally inconvenient and
requires rescaling and thorough alignment. To avoid these issues a more general and, as far as
the authors are aware, original method was used.

Single-pixel imaging techniques [28}29]] effectively turn the SLM into an in situ camera,
giving an image of the input beam which has perfect pixel registration and scaling, however at
the cost of resolution. A sequence of patterned masks are displayed, such that each mask blocks
a particular spatial region of the input field and the remaining light is measured with a power
meter. By using an orthogonal set of masks, namely the Hadamard set, full spatial information
of the intensity field can be recovered, with N2> measurements required to reconstruct an image
with N x N resolution. We use this method to record an image with 32 x 32 resolution and use
bicubic interpolation to expand this up to the 600 x 600 resolution of the SLM. This image is
then used as the input intensity profile for all future hologram generation.

5. Results

The hologram generation methods are tested by displaying each hologram consecutively and
recording the obtained intensity patterns in three different planes as described in the experimen-
tal set-up section. Figure [4] shows a full set of images for the Ferris wheel beam, including the
simulation of the intensity in the image plane in the top row as well as the measured intensity
pattern in the image plane of the SLM (second row), after propagating half a Rayleigh range
(285 mm, third row) and after propagating a full Rayleigh range (569 mm, bottom row). These
are all intensity measurements however the propagation images reveal the accuracy of the phase



reproduction as any phase imperfections will result in a deviation from the desired mode. Sim-
ilar measurements have been taken for the Gaussian beam (LGy), the Laguerre-Gaussian beam
(LGp) and the photograph; a subset of which are shown in Fig.[3]

We perform a quantitative analysis of the generation methods by assessing them against two
criteria: the accuracy of the beam generation and the distribution of power.

5.1. Beam generation accuracy

To measure the accuracy of each method we compare the generated intensity with the desired
beam. The methods should be able to accurately reproduce both intensity and phase, and while
we do not measure the phase profiles directly, the intensity measurements after propagation
indicate the accuracy of the phase. For the laser modes we perform a 2D fit of the intensity
data with the relevant function (|[LGy|?, |LG19|? or |LG3 + LG \2), specifying the waist and
setting the centre position, offset, rotational phase and amplitude as free parameters. For the
photograph, we instead use the Mathematica IMAGEALIGN function to scale and align the
reference image with the intensity data.

The intensity data is then compared to the fitted function by employing the Peak Signal-to-
Noise Ratio (PSNR) as a quality metric [30]. The PSNR is a well-established metric, originally
employed by signal engineers and later maintained as a tool to quantify the quality of recon-
struction of lossy compression codecs. We note that, in order to compare the different results,
the data has to be normalised with respect to each other and as such, the background (taken
from the numerical fits) was first subtracted before normalising the data. The normalisation
was accomplished by dividing each image by its corresponding fitted amplitude and rescaling
the data and fit such that each fit has the same maximum value. The data however was allowed
to go outside the boundaries of the fit.

We then employ the PSNR quality metric, which is based on the mean square error (MSE)
given by:

1 m—1n—1
MSE=—Y Y [1(i,j)—K(i, j)]? (18)
mn = j=o

where [ is the perfect m by n monochrome reference image and K is the approximation under
study. This allows us to define the PSNR per decibel:

19)

2
PSNR = 10log;, (MAX’ )

MSE

where MAX; is the maximum value of I. We apply this metric to the data for each generation
method, desired image and propagation distance, see Fig. [0

5.2.  Distribution of power

In many applications one is not only concerned with the spatial mode quality, but requires as
much power as possible. Our second assessment criteria is therefore to find how much power
there is in the desired mode for each method. We first measure the total power at the output
compared to the total power impinging on the SLM, which gives the total efficiency. We define
the *mode efficiency’ as the fraction of this power which contains our desired mode, determined
by calculating the projection of our generated mode onto our desired mode (details can be found
in Section 3A of [31]]). Using the Ferris wheel as our test beam, the results are illustrated in Fig.
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Fig. 6. An estimation of the constructed field quality, as determined by the peak signal-to-
noise ratio for the three propagating modes and the arbitrary pattern.
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Fig. 7. The variation in mode efficiency across the different hologram generation methods,
as measured for different propagation distances of an optical Ferris wheel. The total power
after the spatial filter for each method is scaled by the associated cross-correlation between
each mode and its fit, before being expressed as a percentage of the measured input power
of 26.4mW.

6. Discussion

We begin by considering the ability for each of the methods to produce an accurate represen-
tation of the intensity of the desired modes. Inspection of Fig. [6|reveals that methods A-D and
F perform well in general, with only method E showing a clear dip in quality. We attribute
this deviation to a high sensitivity to small imperfections in the input phase, which we assume
to be flat. This is perhaps natural as the method does not modulate the depth of the grating,
instead relying on interference to achieve intensity modulation, and therefore shows increased
sensitivity to phase.

Taking a closer look at the creation of the Ferris wheel mode (top of Fig. [6) we can see that
in general the mode is best in the image plane and the quality degrades slightly as it prop-
agates, showing a small deviation from the desired phase. Looking at specific methods, the
absolute best performance is achieved by methods C and D, very closely followed by method
A. The strong performance of methods C and D is not surprising, however our naive bench-
mark, method A, performs extremely well for all propagation distances. Method B is a little
less accurate in the image plane, but seems to be more robust to propagation; with method F
also propagating well, indicating an accurate generation of the phase profile.

Turning to the LG o mode generation (second row of Fig.[6) we once again see that all meth-
ods except for method E perform similarly well. Once again method A performs surprisingly
well, with the other methods very close behind. The Gaussian mode generation again shows
similar results (third row of Fig. [6). Turning finally to the recreation of the boat (bottom row of
Fig.[6) we see methods A,C and D performing well with the other methods falling close behind,
with a range of only 5 dB. We note in particular that the relatively poor performance of method
B here seems to arise from a sensitivity to our aberration correction, which can be seen by the
presence of an overall cylindrical lens pattern (see Fig. [5]bottom row).

We next consider the power in the desired mode. The mode efficiencies of the six hologram
generation methods are shown in Fig. [/| and we see that method E contains the most power
with more than 35% of the input power, while the other methods all contain between 12% and
18%. It should be noted that these numbers are specific to the exact input beam and desired
mode, with an upper limit being placed on the mode efficiency equal to the projection of the
input beam onto the output mode, which in this case is 53%. These numbers can therefore be
increased by appropriate tuning of the input and output modes to optimise overlap.



From this analysis we can draw several conclusions; for the generation of laser modes, if
beam accuracy is your primary concern, methods C and D perform very well. Surprisingly
however, these methods do not significantly outperform our naive method A. While this result
may be specific to the modes chosen here, this is a significant result particularly in applications
where hologram generation has to be performed quickly, as method A does not involve the
numerical inversion present for methods C and D.

If one cares primarily about the power present in the desired mode then method E is the
clear winner, however this comes at the cost of significant loss in beam quality. For small, but
significant gains in power, method A may also be of interest.

7. Experimental details

In addition to the various different generation methods, the experimental implementation also
plays an important role. In this section we discuss the relevance of choosing the correct aperture
size, aberration corrections and maximal mode overlap.

7.1.  Mode quality and power with aperture size

All of the generation methods presented rely on spatially filtering the desired mode in the first
order diffracted spot. Whereas other beam shaping techniques explicitly rely on the use of
apertures [32], we simply wish to remove all of the unwanted parts of the field. We find that the
exact size of this spatial filter has a significant impact on the quality of the mode and we use
our numerical simulation to investigate this effect more rigourously.

We generate a hologram for the Ferris wheel mode using method A and monitor the beam
quality as we increase the size of our spatial filter. The results are plotted in Fig. [8(a) and
here we see that where the aperture is not cutting the beam (contrary to the first data point), a
lower filter radius can significantly improve the mode quality. Additionally, we see that under
the same conditions there is an associated pseudo-linear decrease in power, but with a very
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Fig. 8. (a) The Ferris wheel PSNR and total power as the size of the spatial filter is adjusted,
where the red bars highlight the data points that have been visualised in (c). (b) The full
far- and near-field intensity profiles associated with filter size 0.6 mm where the red dashed
box indicates the sub-region used in the left column of (c). (c¢) Far- and near-field intensity
profiles associated with the filter sizes marked in pink in (a), with the filter boundary marked
with a white circle



Fig. 9. The intensity profile of the beam taken at the focus of a 750 mm focal length lens for
(a) the beam before the SLM and (b) the beam after the SLM. (c) shows the beam after the
SLM when a cylindrical lens of focal length 11 m at an angle of 96 degrees to the vertical
is added to the hologram.

shallow gradient. In most situations therefore, we would assume that the quality gain justifies
the small loss in power. For illustration, we also visualize the full Fourier plane ( Fig.[8[b) ) and
a subection of the Fourier plane including the spatial filter size with respect to the first order
(Fig. [§[c). The resulting intensity patterns are also displayed in the right hand column of Figs.

B[b) and [8fc).
7.2.  Aberration correction

A perfect SLM would have an optically flat front surface. In reality however, small surface
imperfections lead to an astigmatic output beam, even when the SLM is switched off. The effect
of this is most pronounced in the far field and is therefore easily observable at the focus of a
lens. In general, this astigmatism can be corrected by first characterising these astigmatisms
using typically a Zernike mode decomposition and then correcting for these by applying the
appropriate inverse phase [|33,34]. Here however we find that the introduced astigmatism is very
well approximated by a cylindrical lens and can be corrected by incorporating an appropriate
cylindrical lens into the holograms. To demonstrate the astigmatism introduced by the SLM we
have deflected a Gaussian input beam via a uniform grating displayed across the whole SLM.
Applying the cylindrical lens phase correction to the SLM removes most of the aberrations, as
shown in Fig.[9]

7.3.  Limited beam overlap

We have stated previously that producing an accurate Eoy(x,y) requires knowledge of Ej, (x,y).
Methods (A-D and F) modulate the grating in order to remove power where it is not wanted. As
a consequence, on a pixel by pixel basis, the desired beam amplitude cannot exceed the input
beam amplitude. If perfect beam accuracy is desired then this forces the output beam to be
scaled in intensity such that Eqy(x,y) never exceeds Ei,(x,y) at any position, thereby limiting
the amount of light in the output mode. For high power applications this is undesired and we
therefore propose a method which can increase the output power at the expense of some beam
accuracy. This can be achieved by misrepresenting the form of Ej,(x,y) used for the calculation
of the relative field.

The peak value of the relative field and therefore the output power is limited by the low
amplitude regions of Ej,(x,y). Therefore if these low amplitude values are removed, by setting
all values below a particular threshold to the threshold value, the total power in the output mode
will increase. This however misrepresents the input beam and therefore reduces the accuracy of
the mode generation, as is shown in Fig. It should be noted that the data shown previously
in this paper was taken with a threshold level of 0.01, i.e. 1%, serving only to remove the effects
of the noise associated with our intensity measurement.

Fig.[I0|clearly shows two regimes; a stable region for a threshold value below 0.2 and a tran-
sition to a scaling region beyond. This transition point depends on the relative size of Ej,(x,y)
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Fig. 10. (a) The PSNR and associated beam power of the simulated Ferris wheels with
respect to the intensity threshold level. Four key threshold levels are highlighted by a red
bar, corresponding to the images in (b). (b) 2D intensity profiles and central cross sections
of the assumed input beam (grey) and the generated beam (blue).

and Eges(x,y) and can be understood to occur when Eges(x,y) begins to overlap with the thresh-
olded region (flat parts in the top row of Fig.[I0[b)). In the latter region we see that it is possible
to trade beam generation accuracy for more power.

8. Conclusions

We have tested six different methods of digital hologram generation and find that all are capa-
ble of producing high quality beams. Experimental testing of each method’s ability to generate
a Gaussian mode, LG modes and an arbitrary image reveals the strengths of each particular
method; we find that method A, though the simplest and most naive performs extremely well in
all tests and would be well suited to applications requiring fast calculations of holograms. Meth-
ods B, C and D all perform very well across all tests with C and D having a slight advantage
in the generation of arbitrary images. Method E, while producing a low quality mode, provides
the most power and method F performs well and requires a reduced phase range, making it
useful for low-cost SLMs.

In addition we have stressed the importance of accounting for the form of the input beam
and introduced a new way of detecting this in situ. We also find that the intensity profile of the
input beam can place restrictions on the output power when the desired beam is large and have
introduced and demonstrated a method to increase the output power at the expense of beam
generation accuracy. Finally we have shown that the spatial filter size plays a crucial role in
the beam generation accuracy and have shown that optimal filtering can achieve an increase in
beam generation accuracy without significant loss of power.

We believe that these results will be useful across the many applications which rely on digital
holograms, including optical trapping, atomic potential shaping, microscopy and beyond.
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