17 research outputs found

    Verification of the 3D laser scanner reliability

    Get PDF
    Tato bakalářská práce se zabývá problematikou ověření schopností 3D laserového skeneru Gocator 2330 od společnosti LMI Technologies. Hlavním cílem poté bude identifikovat faktory, které mohou ovlivňovat schopnost skeneru zachycovat měřený objekt, a ty poté ověřit na navržených experimentech. Jako výstup poté bude stručný přehled, jak zdatně byl skener schopný získávat data při vybraných experimentech.The aim of this bachelor thesis will be to verificate skills of the 3D laser scanner Gocator 2330 produced by LMI Technologies. The main objectives of this work will be the identification of parameters that influence scanning with 3D laser scanner. Some of these factors will be further verified in the practical part of this thesis. The output will be a brief overwiew of the abilities of this scanner.

    Comparison of Sublimation 3D Scanning Sprays in Terms of Their Effect on the Resulting 3D Scan, Thickness, and Sublimation Time

    Get PDF
    This study compared eight sublimation scanning sprays in terms of their effect on 3D scanning results, coating thickness, and sublimation time. The work used an automated spraying system to ensure the same deposition conditions for all tested materials. All experiments were performed under the same environmental conditions to exclude the influence of the ambient environment on the coatings. All tested scanning sprays created coatings with thicknesses in the order of tens of micrometers that were detectable by the 3D scanner Atos III Triple Scan. The coatings must be applied carefully when accurate measurements are required. All used materials enabled the capture of the highly reflective surface of the Si-wafer. However, the differences between some sprays were significant. Sublimation time measurements showed that all coatings disappeared from the Si-wafer surface completely. Nevertheless, all coatings left visible traces on the mirror-like surface. They were easily wiped off with a cloth

    Full-System Simulation of Mobile CPU/GPU Platforms

    Get PDF
    Graphics Processing Units (GPUs) critically rely on a complex system software stack comprising kernel- and userspace drivers and Just-in-time (JIT) compilers. Yet, existing GPU simulators typically abstract away details of the software stack and GPU instruction set. Partly, this is because GPU vendors rarely release sufficient information about their latest GPU products. However, this is also due to the lack of an integrated CPU/GPU simulation framework, which is complete and powerful enough to drive the complex GPU software environment. This has led to a situation where research on GPU architectures and compilers is largely based on outdated or greatly simplified architectures and software stacks, undermining the validity of the generated results. In this paper we develop a full-system system simulation environment for a mobile platform, which enables users to run a complete and unmodified software stack for a state-of-the-art mobile Arm CPU and Mali-G71 GPU powered device. We validate our simulator against a hardware implementation and Arm’s stand-alone GPU simulator, achieving 100% architectural accuracy across all available toolchains. We demonstrate the capability of our GPU simulation framework by optimizing an advanced Computer Vision application using simulated statistics unavailable with other simulation approaches or physical GPU implementations. We demonstrate that performance optimizations for desktop GPUs trigger bottlenecks on mobile GPUs, and show the importance of efficient memory use.Postprin

    Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter

    Get PDF
    Genotype-to-phenotype maps and the related fitness landscapes that include epistatic interactions are difficult to measure because of their high dimensional structure. Here we construct such a map using the recently collected corpora of high-throughput sequence data from the 75 base pairs long mutagenized E. coli lac promoter region, where each sequence is associated with its phenotype, the induced transcriptional activity measured by a fluorescent reporter. We find that the additive (non-epistatic) contributions of individual mutations account for about two-thirds of the explainable phenotype variance, while pairwise epistasis explains about 7% of the variance for the full mutagenized sequence and about 15% for the subsequence associated with protein binding sites. Surprisingly, there is no evidence for third order epistatic contributions, and our inferred fitness landscape is essentially single peaked, with a small amount of antagonistic epistasis. There is a significant selective pressure on the wild type, which we deduce to be multi-objective optimal for gene expression in environments with different nutrient sources. We identify transcription factor (CRP) and RNA polymerase binding sites in the promotor region and their interactions without difficult optimization steps. In particular, we observe evidence for previously unexplored genetic regulatory mechanisms, possibly kinetic in nature. We conclude with a cautionary note that inferred properties of fitness landscapes may be severely influenced by biases in the sequence data

    Current Research into Applications of Tomography for Fusion Diagnostics

    Get PDF
    Retrieving spatial distribution of plasma emissivity from line integrated measurements on tokamaks presents a challenging task due to ill-posedness of the tomography problem and limited number of the lines of sight. Modern methods of plasma tomography therefore implement a-priori information as well as constraints, in particular some form of penalisation of complexity. In this contribution, the current tomography methods under development (Tikhonov regularisation, Bayesian methods and neural networks) are briefly explained taking into account their potential for integration into the fusion reactor diagnostics. In particular, current development of the Minimum Fisher Regularisation method is exemplified with respect to real-time reconstruction capability, combination with spectral unfolding and other prospective tasks

    Study of surface coating possibilities for 3D scanning purposes

    Get PDF
    This diploma thesis deals with matte coatings for 3D scanning purposes. The coatings are made with spray gun which uses a vibrating membrane atomizer and air blow gun. A suspension of titanium dioxide and alcohol is used as a coating material. This thesis describes the effect of the spray gun process parameters on the deposited coatings. These include, for example type of the coating suspension or setup of the blow gun. Phase Doppler Anemometry was used to measure spray characteristics. Deposited coatings were measured with profilometer and scanned with 3D scanner to study their thickness and effect on the results of 3D reconstruction. The result of this work was the coating with thickness below 1 µm with good optical properties for 3D scanning purposes. Standard deviation of the captured point cloud from the reference plane was below 0.0011 mm

    Application of imaging techniques for detection of defects, damage and decay in timber structures on site

    No full text
    The manuscript presents the application of NDT imaging techniques as complementary tools to be used during visual inspection. NDT imaging can be used to map inhomogeneity and to identify the areas at the highest risk for damage in timber structures. The paper highlights the potential of imaging techniques accepted and practiced for the assessment of timber structures. Multi-sensor approaches are presented and recommended for multi-scale, multi-resolution correlated information, which allow the non-destructive, reliable and fast assessment of damage and risk level in the existing timber structures
    corecore