6 research outputs found

    Prevalence and zoonotic transmission of colistin-resistant and carbapenemase-producing Enterobacterales on German pig farms

    Get PDF
    The treatment of infections due to colistin-resistant (Col-E) and carbapenemase-producing (CPE) Enterobacterales challenges clinicians both in human and veterinary medicine. Preventing zoonotic transmission of these multidrug-resistant bacteria is a Public Health priority. This study investigates the prevalence of Col-E and CPE on 81 pig farms in North-West Germany as well as among 138 directly exposed humans working on these farms. Between March 2018 and September 2020, 318 samples of porcine feces were taken using boot swabs. Farm workers provided a stool sample. Both a selective culture-based approach and a molecular detection of colistin (mcr-1 to mcr-5) and carbapenem resistance determinants (blaOXA-48/blaVIM/blaKPC/blaNDM) was used to screen all samples. Isolates from farm workers and farms were compared using core genome multilocus-sequence typing (cgMLST) and plasmid-typing. CPE were cultured neither from porcine feces nor from human stool samples. In one stool sample, blaOXA-48 was detected, but no respective CPE isolate was found. Col-E were found in 18/318 porcine (5.7%) samples from 10/81 (12.3%) farms and 2/138 (1.4%) farmers, respectively. All Col-E isolates were Escherichia coli harboring mcr-1. Both farm workers colonized with Col-E worked on farms where no Col-E were detected in porcine samples. In conclusion, CPE were absent on German pig farms. This supports findings of culture-based national monitoring systems and provides evidence that even when improving the diagnostic sensitivity by using molecular detection techniques in addition to culture, CPE are not prevalent. Col-E were prevalent in porcine feces despite a recent decrease in colistin usage among German livestock and absence of colistin treatments on the sampled farms. Farmers carried Col-E, but zoonotic transmission was not confirmed.Peer Reviewe

    Ex Vivo Mesenchymal Stem Cell Therapy to Regenerate Machine Perfused Organs

    No full text
    Transplantation represents the treatment of choice for many end-stage diseases but is limited by the shortage of healthy donor organs. Ex situ normothermic machine perfusion (NMP) has the potential to extend the donor pool by facilitating the use of marginal quality organs such as those from donors after cardiac death (DCD) and extended criteria donors (ECD). NMP provides a platform for organ quality assessment but also offers the opportunity to treat and eventually regenerate organs during the perfusion process prior to transplantation. Due to their anti-inflammatory, immunomodulatory and regenerative capacity, mesenchymal stem cells (MSCs) are considered as an interesting tool in this model system. Only a limited number of studies have reported on the use of MSCs during ex situ machine perfusion so far with a focus on feasibility and safety aspects. At this point, no clinical benefits have been conclusively demonstrated, and studies with controlled transplantation set-ups are urgently warranted to elucidate favorable effects of MSCs in order to improve organs during ex situ machine perfusion

    Farming Practice Influences Antimicrobial Resistance Burden of Non-Aureus Staphylococci in Pig Husbandries

    No full text
    Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms
    corecore