68 research outputs found

    Kinks, rings, and rackets in filamentous structures

    Full text link
    Carbon nanotubes and biological filaments each spontaneously assemble into kinked helices, rings, and "tennis racket" shapes due to competition between elastic and interfacial effects. We show that the slender geometry is a more important determinant of the morphology than any molecular details. Our mesoscopic continuum theory is capable of quantifying observations of these structures, and is suggestive of their occurrence in other filamentous assemblies as well.Comment: This paper was originally published in PNAS 100: 12141-12146 (2003). The present version has corrected Eq. 3, A1, and A2, and some minor typo

    Ena/VASP proteins have an anti-capping independent function in filopodia formation

    Get PDF
    Author Posting. © American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 2579-2591, doi:10.1091/mbc.E06-11-0990.Filopodia have been implicated in a number of diverse cellular processes including growth-cone path finding, wound healing, and metastasis. The Ena/VASP family of proteins has emerged as key to filopodia formation but the exact mechanism for how they function has yet to be fully elucidated. Using cell spreading as a model system in combination with small interfering RNA depletion of Capping Protein, we determined that Ena/VASP proteins have a role beyond anticapping activity in filopodia formation. Analysis of mutant Ena/VASP proteins demonstrated that the entire EVH2 domain was the minimal domain required for filopodia formation. Fluorescent recovery after photobleaching data indicate that Ena/VASP proteins rapidly exchange at the leading edge of lamellipodia, whereas virtually no exchange occurred at filopodial tips. Mutation of the G-actin–binding motif (GAB) partially compromised stabilization of Ena/VASP at filopodia tips. These observations led us to propose a model where the EVH2 domain of Ena/VASP induces and maintains clustering of the barbed ends of actin filaments, which putatively corresponds to a transition from lamellipodial to filopodial localization. Furthermore, the EVH1 domain, together with the GAB motif in the EVH2 domain, helps to maintain Ena/VASP at the growing barbed ends.This work was supported in part by National Institutes of Health Grants GM7542201 to D.A.A., GM58801 to F.B.G., and GM62431 to G.G.B. and by Cell Migration Consortium Grants GM64346 to D.A.A and G.G.B

    The Drosophila javelin Gene Encodes a Novel Actin-Associated Protein Required for Actin Assembly in the Bristle ▿

    No full text
    The Drosophila melanogaster bristle is a highly polarized cell that builds specialized cytoskeletal structures. Whereas actin is required for increasing bristle length, microtubules are essential for bristle axial growth. To identify new proteins involved in cytoskeleton organization during bristle development, we focused on identifying and characterizing the javelin (jv) locus. We found that in a jv mutant, the bristle tip is swollen and abnormal organization of bristle grooves is seen over the entire bristle. Using confocal and electron microscopy, we found that in jv mutant bristles, actin bundles do not form properly due to a loss of actin filaments within the bundle. We show that jv is an allele of the predicted CG32397 gene that encodes a protein with no homologs outside insects. Expression of the Jv protein fused to a green fluorescent protein (GFP) shows that the protein is colocalized with actin bundles in the bristle. Moreover, expression of Jv-GFP within the germ line led to the formation of ectopic actin bundles that surround the nucleus of nurse cells. Thus, we report that Jv is a novel actin-associated protein required for actin assembly during Drosophila bristle development
    corecore